• Title/Summary/Keyword: Plane Cracks

Search Result 174, Processing Time 0.023 seconds

The Substructure Near Indents With Temperature During Microindentation on Basal (0001) Plane in Sapphire Single Crystals (사파이어 단결정의 basal (0001) 결정면에 미세압흔시 온도에 따른 압흔 주위 미세구조에 관한 연구)

  • Yun, Seok-Yeong
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.784-788
    • /
    • 2000
  • The Vickers microhardness was measured on the basal (0001) plane of sapphire single crystals in the temperature range from 25$^{\circ}C$to 1000$^{\circ}C$. The substructure surrounding the indents was investigated using selective chemical polishing and etching, optical microscopy, and trasmission electron microscopy (TEM). At room temperature, cracks were predominant, and at intermediate temperatures (400$^{\circ}C$and 600$^{\circ}C$), extensive rhombohedral twinning was observed. On the other hand, at higher temperatures, prism plane slip bands on prism plane {1120}(원문참조) were dominant in the microstructure. TEM observations revealed that the dislocation substructure at the vicinity of the indents consisted of fairly straight dislocations lying in basal and/or prism planes and aligned along the <1100> and <1120> directions. The details of the glide dissociation of perfect <110> screw dislocations into three collinear 1/3<1100> partials on the prism plane and the Peierls potential for sapphire single crystals were discussed.

  • PDF

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid (상태 기반 페리다이나믹 모델에 의한 동적취성파괴 해석: 평면응력 탄성체의 응력 전파와 균열패턴 분석)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2015
  • A state-based peridynamic model is able to describe a general constitutive model from the standard continuum theory. The response of a material at a point is dependent on the deformation of all bonds connected to the point within the nonlocal horizon region. Therefore, the state-based peridynamic model permits both the volume and shear changes of the material which is promising to reproduce the complicated dynamic brittle fracture phenomena, such as crack branching, secondary cracks, cascade cracks, crack coalescence, etc. In this paper, the two-dimensional state-based peridynamic model for a linear elastic plane stress solid is employed. The damage model incorporates the energy release rate and the peridynamic energy potential. For brittle glass materials, the impact of the crack-parallel compressive stress waves on the crack branching pattern is investigated. The peridynamic solution for this problem captures the main features, observed experimentally, of dynamic crack propagation and branching. Cascade cracks under strong tensile loading and secondary cracks are also well reproduced with the state-based peridynamic simulations.

Collinear cracks in a layered structure with a thermoelastically graded interfacial zone under thermal shock (열충격하 적층체의 열탄성 구배기능 계면영역을 고려한 동일선상 복수균열 해석)

  • Choi, Hyung-Jip;Jin, Tae-Eun;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.779-789
    • /
    • 1998
  • In this paper, the thermal shock responses of collinear cracks in a layered medium are investigated based on the uncoupled, quasi-static plane thermoelasticity. The medium is modeled as a bonded structure composed of a surface layer and a semi-infinite substrate. Between these two dissimilar homogeneous constituents, a functionally graded interfacial zone exists with the nonhomogeneous features of continuously varying thermoelastic properties. Three cracks are assumed to be present in the layered medium, one in each one of the constituent materials, aligned collinearly normal to the nominal interfaces. A system of singular integral equations is solved, subjected to the forcing terms of equivalent transient thermal tractions acting on the locations of cracks via superposition. Main results presented are the transient thermal stress intensity factors to illustrate the parametric effects of various geometric and amterial combinations of the medium with the thermoelastically graded interfacial zone and the collinear cracks.

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

THE INDIRECT BOUNDARY INTEGRAL METHOD FOR CURVED CRACKS IN PLANE ELASTICITY

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.913-930
    • /
    • 2002
  • For curved crack problems in plane elasticity, subjected to the traction conditions on the crack faces, we present a system of boundary integral equations. The procedure is based on the indirect boundary integral method in terms of real variables. For efficient mathematical analysis, we decompose the singular kernel into the Cauchy singular part and the regular one. As a result, solvability of the presented system is proved and availability of the present approach is shown by the numerical example of a circular arc crack.

Elastic-Plastic Fracture Mechanics Analyses For circumferential Part-through Surface Cracks At The Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1766-1771
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes.

  • PDF

Two new triangular finite elements containing stable open cracks

  • Rezaiee-Pajand, Mohammad;Gharaei-Moghaddam, Nima
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • The focus of this paper is on the elements with stable open cracks. To analyze plane problems, two triangular elements with three and six nodes are formulated using force method. Flexibility matrices of the elements are derived by combining the non-cracked flexibility and the additional one due to crack, which is computed by utilizing the local flexibility method. In order to compute the flexibility matrix of the intact element, a basic coordinate system without rigid body motions is required. In this paper, the basic system origin is located at the crack center and one of its axis coincides with the crack surfaces. This selection makes it possible to formulate elements with inclined cracks. It is obvious that the ability of the suggested elements in calculating accurate natural frequencies for cracked structures, make them applicable for vibration-based crack detection.

Study of seismic traveltime and amplitude effect to detect to detect cracks in rock (암석시편의 균열조사를 위한 탄성파 주시 및 진폭 변화에 관한 연구)

  • 서백수;백환조;민경원
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.239-244
    • /
    • 1996
  • Cracks have influence on the physical and mechanical and, more importantly, on the engineering properties of the rock. Physical properties including the volumetric deformation coefficient, electrical resistivity, seismic wave velocity, and the mechanical properties such as the elastic constants and strength of rock are affected significantly by the presence of cracks of various sizes. An experimental program was undertaken to investigate the effect of a finite line crack on the diffraction of the plane compressional wave. Horizontal and vertical components of displacement and acceleration curve were obtained using a single-source and multi-receivers system. A theoretical model from numerical analysis implementing the finite element method was compared with the measured data.

  • PDF

Energy release rate for kinking crack using mixed finite element

  • Salah, Bouziane;Hamoudi, Bouzerd;Noureddine, Boulares;Mohamed, Guenfoud
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.665-677
    • /
    • 2014
  • A numerical method, using a special mixed finite element associated with the virtual crack extension technique, has been developed to evaluate the energy release rate for kinking cracks. The element is two dimensional 7-node mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed finite element ensures the continuity of stress and displacement vectors on the coherent part and the free edge effect. This element has been formulated starting from a parent element in a natural plane with the aim to model different types of cracks with various orientations. Example problems with kinking cracks in a homogeneous material and bimaterial are presented to assess the computational accuracies.