Browse > Article
http://dx.doi.org/10.12989/sem.2014.50.5.665

Energy release rate for kinking crack using mixed finite element  

Salah, Bouziane (Department of Civil Engineering, University of 20 August 1955 Skikda)
Hamoudi, Bouzerd (Department of Civil Engineering, University of 20 August 1955 Skikda)
Noureddine, Boulares (Department of Civil Engineering, University of 20 August 1955 Skikda)
Mohamed, Guenfoud (Laboratory of Civil Engineering and Hydraulics, University of Guelma)
Publication Information
Structural Engineering and Mechanics / v.50, no.5, 2014 , pp. 665-677 More about this Journal
Abstract
A numerical method, using a special mixed finite element associated with the virtual crack extension technique, has been developed to evaluate the energy release rate for kinking cracks. The element is two dimensional 7-node mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed finite element ensures the continuity of stress and displacement vectors on the coherent part and the free edge effect. This element has been formulated starting from a parent element in a natural plane with the aim to model different types of cracks with various orientations. Example problems with kinking cracks in a homogeneous material and bimaterial are presented to assess the computational accuracies.
Keywords
mixed finite element; kinking crack; energy release rate; virtual crack extension technique; bimaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beghini, M, Benedetti, M., Fontanari, V. and Monelli, B.D. (2012), "Stress intensity factors of inclined edge cracks: A simplified approach", Eng. Fract Mech. , 81, 120-129.   DOI
2 Amestoy, M. and Leblond, J.B. (1992), "Crack paths in plane situations-II. Detailed form of expansion of the stress intensity factors", Int J. Solid Struct., 29, 465-501.   DOI   ScienceOn
3 Baker, M. (2008), "Finite element crack propagation calculation using trial cracks", Comput. Mater. Sci., 43, 179-183.   DOI   ScienceOn
4 Baker, M. (2009), "Simulation of crack propagation in mixed mode and at biomaterial interfaces using trial cracks", Comput Mater. Sci., 45, 680-683.   DOI   ScienceOn
5 Bildy, B.A. (1975), "The crack with a kinked tip", Int. J. Fract. Mech., 11, 708-712.   DOI
6 Blonco, C, Martinez-Esnaola, J.M. and Atkinson, C. (1998), "Kinked cracks in an anisotropic elastic materials", Int. J. Fract., 93, 387-407.   DOI
7 Boulenouar, A, Benseddiq, N. and Mazari, M. (2013), "Strain energy density prediction of crack propagation for 2D linear elastic materials", Theor. Appl. Fract. Mech., 67-68, 29-37.   DOI
8 Bouzerd, H., Boulares, N. and Bouchair, A (2011), "Un element fini mixte pour le calcul du taux de restitution d'energie du coudage (kinking) d'une fissure", XXIXe Rencontres Universitaires de Genie Civil, Tlemcen, Algerie.
9 Bouziane, S., Bouzerd, H. and Guenfoud, M. (2009), "Mixed finite element for modelling interfaces", Euro. J. Comput. Mech., 18(2), 155-175.   DOI
10 Chatterjee, S.N. (1975), "The stress field in the neighbour hood of a branched crack in a infinite elastic sheet", Int J. Solid Struct., 11, 512-538.
11 Cotterel, B. and Rice, J.R (1980), "Slightly curved or kinking cracks", Int. J. Fract., 16, 155-159.   DOI   ScienceOn
12 Jakobsen, J, Andreasen, J.H. and Bozhevolnaya, E. (2008), "Crack kinking of delamination at an inclined core junction interface in sandwich beam", Eng. Fract. Mech., 75, 4759-4773.   DOI   ScienceOn
13 Lo, K.K. (1978), "Analysis of branched cracks", J. Appl. Mech., 45, 797-802.   DOI
14 Xie, D., Waas, A.M., Shahwan, K.W., Schroedre, J.A. and Boeman, R.G. (2004), "Computation of energy release rates for kinking cracks based on virtual crack closure technique", CMES, 6(6), 515-524.
15 Hellen, T.K (1975), "On the method of virtual crack extensions", Int J. Numer. Meth. Eng, 9(1),187-208.   DOI   ScienceOn
16 Khrapkov, A.A. (1971), "The first problem for a notch at the apex of an infinite wedge", Int. J. Fract. Mech., 7,373-382.
17 Melin, S. (1986), "On singular integral equations for kinked cracks", Int J. Fract, 30, 57-65.
18 Li, D.F, Li, C.F, Qing, H. and Lu, J. (2010), "The elastic T-stress for slightly curved or kinked cracks", Int. J. Solid Struct., 47, 1753-1763.   DOI   ScienceOn
19 Maiti, S.K. (1990), "Finite element computation of strain energy release rate for kinking of a crack", Int. J. Fract., 43, 161-174.   DOI
20 Marsavina, L. and Sadowski, T. (2009), "Kinked crack at a bimaterial ceramic interface-numerical determination of fracture parameters", Comput. Mater. Sci., 44, 941-950.   DOI
21 Parks, D.M (1974), "A stiffness derivative finite element technique for determination of elastic crack tip stress intensity factors", Int. J. Fract., 10(4),487-502.   DOI   ScienceOn
22 Hayashi, K. and Nemat-Nasser, S. (1981), "Energy release rate and crack kinking under combined loading", J. Appl. Mech., 13, 520-524.
23 Petit, C (1990), "Modelisation des milieux composites multicouches fissures par la mecanique de la rupture", These de doctorat d'universite, Universite Blaise Pascal, France.
24 Theocaris, P.S. and Makrakis, G.N. (1986), "The kinked crack solved by Mellin transform", J. Elasticity, 16, 393-411.   DOI
25 Theocaris, P.S. and Makrakis, G.N. (1987), "Crack kinking in anti-plane shear solved by Mellin transform", Int. J. Fract, 34, 251-262.   DOI
26 Vitek, V. (1977), "Plane strain intensity factors for branched cracks", Int. J. Fract., 13,481-501.
27 He, M. and Hutchinson, J.W (1989), "Kinking of crack out of an interface", J. Appl. Trans. ASME, 56(2), 270-278   DOI
28 Bouzerd, H. (1992), "Element fini mixte pour interface coherente ou fissuree", These de doctorat en Genie Civil, Universite Claude Bemard Lyon I, France.