• Title/Summary/Keyword: Planar.

Search Result 3,659, Processing Time 0.029 seconds

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Evaluation of Floor Acceleration for the Seismic Design of Non-Structural Elements according to the Core Shape (코어형태에 따른 비구조요소 내진설계를 위한 층가속도 평가)

  • Ki, Ho-Seok;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the floor acceleration for the seismic design of non-structural elements was evaluated using the core shape as a planar variable. Linear time history analysis using 20 models with 5 different planes and 4 different floors on each plane depending on the change in the shape (position and specific gravity) of the core in the square biaxially symmetric plane was performed. The analysis confirmed that the torsional amplification of the floor acceleration was up to 1.7 times in the plane subjected to eccentricity depending on the position of the core, and the effect of torsion was the greatest in the middle floor of the structure. In a plane where only the specific gravity of the core was changed without eccentricity, when the period was less than 0.4694 s, the maximum floor acceleration decreased in the lower floors and increased in the upper floors as the period increased. Conversely, when the period was 0.4694 s or more, it was confirmed that the floor acceleration increased in the lower part and decreased in the upper part as the period increased.

Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures (비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석)

  • Lee, Tae Hee;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.215-226
    • /
    • 2022
  • Significant efforts have been devoted to developing high-performance composite materials by emulating the structure of biological creatures with superior mechanical characteristics. Nacre has been one of the most sought-after natural structures due to its exceptional fracture toughness compared with the constituent materials. However, the effect of manipulating the nacre-like geometry on the impact performance has not been fully investigated thus far. In this study, composites of randomly manipulated nacreous geometry are numerically developed and the impact performance is analyzed. We develop an algorithm by which the planar area of platelets in the nacre-like design is randomly resized. Thereafter, the numerical models of nonuniform nacre-patterned multi-layer structures are developed and the drop-weight impact simulation is performed. The impact behaviors of the model are evaluated by using the ratio of absorbed energy, the von Mises stress distribution, and the impact force-time curve. Therefore, the effect of the geometric irregularity on the nacre-patterned design is elucidated. This insight can be efficiently utilized in establishing the optimum design of the nacre-patterned structure.

A Basic Study on the Extraction of Dangerous Region for Safe Landing of self-Driving UAMs (자율주행 UAM의 안전착륙을 위한 위험영역 추출에 관한 기초 연구)

  • Chang min Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.24-31
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.

  • PDF

A Nuclide Transport Model in the Fractured Rock Medium Using a Continuous Time Markov Process (연속시간 마코프 프로세스를 이용한 균열암반매질에서의 핵종이동 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.529-538
    • /
    • 1993
  • A stochastic way using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock matrix as an extended study for previous work [1]. A nuclide migration model by the continuous time Markov process for single planar fractured rock matrix, which is considered as a transient system where a process by which the nuclide is diffused into the rock matrix from the fracture may be no more time homogeneous, is compared with a conventional deterministic analytical solution. The primary desired quantities from a stochastic model are the expected values and variance of the state variables as a function of time. The time-dependent probability distributions of nuclides are presented for each discretized compartment of the medium given intensities of transition. Since this model is discrete in medium space, parameters which affect nuclide transport could be easily incorporated for such heterogeneous media as the fractured rock matrix and the layered porous media. Even though the model developed in this study was shown to be sensitive to the number of discretized compartment showing numerical dispersion as the number of compartments are decreased, with small compensating of dispersion coefficient, the model agrees well to analytical solution.

  • PDF

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Examination Techniques and Imaging Findings of Hepatic Hemangioma (간혈관종의 검사기법과 영상소견)

  • Chang-Hoe Koo;Jong-Wan Keum;Ji-Eun Seok;Dong-Chul Choi;Yun-Ho Choi;Man-Seok Han;Min-Cheol Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.375-384
    • /
    • 2023
  • Most Hepatic hemangiomas are asymptomatic and small in size, making them difficult to find by pathological examination. Therefore, radiological diagnosis is essential for the early finding and diagnosis of Hepatic hemangioma. Three-phase method using contrast medium in computed tomography, T1, T2-weighted imaging in magnetic resonance imaging, dynamic magnetic resonance imaging using contrast medium, echo planar imaging method, diffusion-weighted imaging method, blood pool scan using 99mTc-labeled red blood cells in nuclear medicine, we looked at the color doppler method In ultrasound, and it is important to accurately understand the imaging findings of hepatic hemangioma and perform the examination in order to make an accurate diagnosis. most hepatic hemangioma are benign tumors, care should be taken not to confuse them with malignant tumors such as hepatocellular carcinoma to prevent unnecessary procedures. Therefore, in order to make an accurate diagnosis, it is important to accurately understand the imaging findings of hemangioma and perform the examination.