• Title/Summary/Keyword: Planar.

Search Result 3,651, Processing Time 0.027 seconds

Optimal Approximated Development of General Curved Plates Based on Deformation Theory (변형 이론을 기반으로한 곡면의 최적 근사 전개)

  • 유철호;신종계
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Elimination of polarization dependency of fiber-to-planar waveguide couplers using a half-waveplate (반파장판을 이용한 광섬유-평면도파로 결합기의 편광 의존성 제거)

  • Lee, Kyu-Hyo;Kim, Hyo-Kyeom;Kim, Kwang-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, a method to eliminate the polarization dependent properties of fiber-to-planar waveguide couplers using a thin half-waveplate is proposed and demonstrated. The operation principle of the device is explained and the fabrication technology is presented. It is experimentally shown that the resonance wavelengths of the device are independent of the polarization state of input light.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

Liquid crystal alignment on patterned-alignment films

  • Lias, Jais Bin;Oo, Thet Naing;Yazawa, Tomohiro;Kimura, Munehiro;Akahane, Tadashi
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • To come up with a bistable liquid crystal (LC) device using unpolarized UV light, single-step laser patterning on a photoalignment layer using a photomask was proposed to achieve an equilibrium configuration of LC molecules in contact with a periodically patterned substrate. The patterns were formed by stripes of alternating random planar and homeotropic anchoring on a submicrometer scale in the order of $0.5{\mu}m$. Two possible configurations of bistable LC cells that can be obtained by combining a micropatterned surface formed with alternating random-planar- and homeotropic-alignment with planar- or homeotropic-alignment surfaces were proposed. The alignment properties of the two proposed models were investigated, along with the microscopic switching behavior of micropatterned nematic LC cells.

A Wideband Circularly Polarized Pinwheel-Shaped Planar Monopole Antenna for Wireless Applications

  • Lee, Wang-Sang;Oh, Kyoung-Sub;Yu, Jong-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • A wideband circularly polarized pinwheel-shaped planar monopole antenna fed by a wideband feeding network is presented in this paper. The proposed antenna is formed by four wideband planar monopole antenna elements with aquadruple feeding network in order to improve the performance of circular polarization. Additionally, the antenna, which is introduced here, has a high gain in the z axis direction because of its folded antenna structure. The attractive characteristics of the proposed antenna are the wide impedance bandwidth of 87.3 % (1 GHz to 2.55 GHz), the 3 dB axial ratio (AR) bandwidth of 92.3 % (1.05 GHz to 2.85 GHz), and the maximum gain within the 3 dB AR bandwidth is about 8.24 dBic.

Planar Gradient Coils for an Open MRI System (개방형 자기공명영상시스템을 위한 평면형 경사자계코일)

  • Lee, Soo-Yeol;Park, Bu-Sik;Yi, Jeong-Han;Yi, Wan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.165-168
    • /
    • 1996
  • Though the planar gradient coils, designed by the magnetic energy minimization procedure, have smaller inductance than conventional gradient coils, the planar gradient oils often suffer from their poor magnetic field linearity. Scaling the spatial frequencies of the current density function designed by the magnetic energy minimization procedure, magnetic field linearity of the planar gradient coils can be featly improved with small sacrifice of gradient coil inductance.

  • PDF

Workspace and Kinematical Characteristics of Planar Parallel Manipulator with Simple (간단한 정기구학을 갖는 평면운동용 병렬 매니플레이터의 구동영역 및 기구학적 특성)

  • 최기봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.97-104
    • /
    • 2003
  • This paper proposes a new parallel manipulator fur plane motion, and then discusses on the workspace and kinematical characteristics of the manipulator. The conventional planar parallel manipulators have some disadvantages which are complex non-closed type direct kinematics, workspaces containing useless voids, and concave type border tines of workspaces. The proposed planar parallel manipulator overcomes the above disadvantages, that is, the manipulator has simple closed type direct kinematics, a void-free workspace, and a convex type borderline of a workspace. This paper shows the simulation result of the workspace as well as performances indices using a homogeneous inverse Jacobian.

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.