• Title/Summary/Keyword: Planar process

검색결과 417건 처리시간 0.028초

설계 및 공정 변수에 따른 600 V급 IGBT의 전기적 특성 분석 (Analysis of The Electrical Characteristics of Power IGBT According to Design and Process Parameter)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.263-267
    • /
    • 2016
  • In this paper, we analyzed the electrical characteristics of NPT planar and trench gate IGBT after designing these devices according to design and process parameter. To begin with, we have designed NPT planar gate IGBT and carried out simulation with T-CAD. Therefore, we extracted design and process parameter and obtained optimal electrical characteristics. The breakdown voltage was 724 V and The on state voltage drop was 1.746 V. The next was carried out optimal design of trench gate power IGBT. We did this research by same drift thickness and resistivity of planar gate power IGBT. As a result of experiment, we obtain 720 V breakdown voltage, 1.32 V on state voltage drop and 4.077 V threshold voltage. These results were improved performance and fabrication of trench gate power IGBT and planar gate Power IGBT.

Polymer Planar-Lightwave-Circuit-Type Variable Optical Attenuator Fabricated by Hot Embossing Process

  • Kim, Jin-Tae;Choi, Choon-Gi;Sung, Hee-Kyung
    • ETRI Journal
    • /
    • 제27권1호
    • /
    • pp.122-125
    • /
    • 2005
  • A polymer-based planar-lightwave-circuit-type variable optical attenuator (VOA) was fabricated using a hot embossing process. With an optimized one-step embossing process, forty micro-channels for the guidance of light were defined on a polymer thin film with an accuracy of ${\pm}0.5{\mu}m$. The fabricated polymeric thermo-optic VOA shows 30 dB attenuation with 110 mW electrical input power at $1.55{\mu}m$. The rise and fall times are less than 5 ms.

  • PDF

Coupled approach of analytical and numerical methods for shape prediction in sheet casting process

  • Chae, Kyung-Sun;Lee, Seong-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.131-139
    • /
    • 2001
  • A coupled approach is proposed for the prediction of sheet profile in sheet casting process, which combines one-dimensional analytical method on planar elongational flow region and three-dimensional numerical method on the other region. The strategy is constructed from the observations that the flow domain of sheet casting process can be separated into two parts based old the flow kinematics. The flow field in the central region of sheet, over which the planar elongational flow dominates, is possibly replaced by one-dimensional analytical solution. Then only a partial flow domain near the edge region of sheet, where the flow kinematics cannot be described by the planar elongational flow itself, requires three-dimensional numerical simulation. Good agreement is observed between the coupled approach developed in this study and the full three-dimensional numerical simulation previously developed and reported by the authors. This coupled approach may have provided flexibility with low costs to accommodate a wide range of die sizes in sheet casting process.

  • PDF

Estimation of 2D Position and Flatness Errors for a Planar XY Stage Based on Measured Guideway Profiles

  • Hwang, Joo-Ho;Park, Chun-Hong;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.64-69
    • /
    • 2007
  • Aerostatic planar XY stages are frequently used as the main frames of precision positioning systems. The machining and assembly process of the rails and bed of the stage is one of first processes performed when the system is built. When the system is complete, the 2D position, motion, and stage flatness errors are measured in tests. If the stage errors exceed the application requirements, the stage must be remachined and the assembly process must be repeated. This is difficult and time-consuming work. In this paper, a method for estimating the errors of a planar XY stage is proposed that can be applied when the rails and bed of the stage are evaluated. Profile measurements, estimates of the motion error, and 2D position estimation models were considered. A comparison of experimental results and our estimates indicated that the estimated errors were within $1{\mu}m$ of their true values. Thus, the proposed estimation method for 2D position and flatness errors of an aerostatic planar XY stage is expected to be a useful tool during the assembly process of guideways.

전달각을 고려한 조향기구의 최적합성 (Optimal Synthesis of Steering Mechanisms Considering Transmission Angles)

  • 박종근
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.68-75
    • /
    • 2012
  • In this study, the optimal synthesis of planar steering mechanisms for vehicles is studied. The author minimized the steering error between two front wheels subject to the constraints of transmission angles. Nonlinear programming methods such as BFGS method and golden section search method are used for this optimization. As numerical examples, Ackermann's steering mechanism, 6-link and 10-link planar mechanism are adopted to check the usefulness of this method. Consequently, among the three optimized mechanisms, 10-link planar one conducts far more accurate performance subject to tight constraints of transmission angles.

평판형 유도 결합 플라즈마틀 이용한 GaN 건식 식각 특성 (GaN Dry Etching Characteristics using a planar Inductively coupled plasma)

  • 김문영;김태현;장상훈;태흥식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.276-278
    • /
    • 1997
  • The reliable etching process is one of the essential steps in fabricating GaN based-device. High etch rate is needed to obtain a deeply etched structure and perfect anisotropic etched facet is needed to obtain lasing profile. In the research, therefore, we had proposed a planar inductively coupled plasma etcher (Planar ICP Etcher) as a high density plasma source, and studied the etching mechanism using the $CH_4/H_2$/Ar gas mixture. Dry etching characteristics such as etch rate, anisotropic etching profile and so on, for the III-V nitride layers were investigated using Planar ICP Etcher, based on the plasma characteristic as a variation of plasma process parameters.

  • PDF

변형 이론을 기반으로한 곡면의 최적 근사 전개 (Optimal Approximated Development of General Curved Plates Based on Deformation Theory)

  • 유철호;신종계
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Super Juction MOSFET의 공정 설계 최적화에 관한 연구 (Optimal Process Design of Super Junction MOSFET)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.501-504
    • /
    • 2014
  • This paper was developed and described core-process to implement low on resistance which was the most important characteristics of SJ (super junction) MOSFET. Firstly, using process-simulation, SJ MOSFET optimal structure was set and developed its process flow chart by repeated simulation. Following process flow, gate level process was performed. And source and drain level process was similar to genral planar MOSFET, so the process was the same as the general planar MOSFET. And then to develop deep trench process which was main process of the whole process, after finishing photo mask process, we developed deep trench process. We expected that developed process was necessary to develop SJ MOSFET for automobile semiconductor.

Planar Flow Casting의 퍼들 형성에 관한 수치해석 (A Numerical Study of the Melt Puddle Formation in the Flow Casting,)

  • 김영민;임익태;김우승
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1365-1372
    • /
    • 2001
  • In the planar flow casting(PFC) process, the conditions of the melt puddle between nozzle and rotating wheel affect significantly the quality and dimensional uniformity of the downstream ribbon. For stable puddle formation, the nozzle is placed very close to the quenching wheel, so the surface-tension and wall-adhesion forces have an important effect upon the fluid flow.\`In this study the planar flow casting process has been mode]ed using the VOF method for free surface tracking. The transient puddle formation from the present analysis shows good agreements with the previous experimental results. Furthermore, the variation of melt temperature and the corresponding cooling rate of the melt have been examined. The present results also show how the melt puddle can be farmed on the rotating substrate, how the melt flows within the puddle, and how the changes of the process variables affect the puddle formation and its corresponding fluid flow and heat transfer behavior.

평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석 (Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet)

  • 안대환;김동식
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.