• 제목/요약/키워드: Planar motion mechanism

검색결과 68건 처리시간 0.026초

공간오차 측정을 통한 6자유도 병렬기구의 보정 (Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error)

  • 오용택;아궁 샴수딘 사라기;김정현;고태조
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

평면 직렬 메커니즘의 기하학적 속도 및 힘 해석 (Geometrical Velocity and Force Analyses on Planar Serial Mechanisms)

  • 이찬;이재원;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성 (Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements)

  • 유홍희;홍정렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

만타형 UUV의 VPMM 전산해석기법 개발 (Numerical Modelling Techniques of VPMM for Manta Type UUV)

  • 이상의
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.151-151
    • /
    • 2023
  • 무인잠수정의 정밀한 제어 시스템 개발에는 높은 정도의 조종 유체력 미계수 추정이 필수적이다. 전통적으로 조종 미계수는 모형을 이용한 실험(사항, Planar Motion Mechanism, Rotating Arm)과 단순한 이론과 경험을 기반으로 개발된 경험식으로 추정하였다. 그러나 최근 크게 향상된 계산기 성능의 발전은 전산유체역학의 적용성을 크게 확대하였다. 따라서 본 논문에서는 만타형 무인잠수정의 조종 유체력 미계수 추정을 위한 전산유체역학 해석기법을 개발하고자 한다. 특히, 수직 동적 PMM 시험법에 관한 해석기법을 중점적으로 개발한다. 개발된 기법을 이용하여 만타형 무인 잠수정의 6자유도 유체력을 추정하고 그 결과를 실험과 비교하여 개발된 기법을 검증한다. 본 연구에서는 1/6 모형을 이용한다. 수치해석기법 개발은 RASN 기반 상용 해석소프트웨어인 STAR-CCM+를 사용하였다.

  • PDF

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석 (A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties)

  • 이동연;이무연
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.

동전기력에 기초한 자기 부상 평면 운송 시스템의 부상 메커니즘에 관한 연구 (A Study on the Levitation Mechanism Based on the Electrodynamic Force for a Maglev Planar Transportation System)

  • 박준혁;백윤수
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1025-1033
    • /
    • 2006
  • This paper describes the levitation mechanism using magnetic wheel for a maglev planar transportation system. Rotation of the magnetic wheel where the permanent magnet array is embedded produces the time varying traveling magnetic flux density and the generated magnetic flux density creates the induced levitation force and drag force with the conductor. Because the net drag force is zero, magnetic wheel can only generate the levitation force. Thus, it always guarantees the stability in levitation direction and it does not disturb other directional motion. In this paper, levitation principle of the magnetic wheel is analyzed using distributed field approach and dynamic characteristics of the levitation in the magnetic wheel system are estimated. The feasibility of the proposed levitation mechanism is verified through the several experimental works.

VPMM 시험을 이용한 수중 잠수함 모형의 동유체력 계수 추정에 관한 연구 (Experimental Investigation on Hydrodynamic Coefficients of Submarine Model by VPMM Test)

  • 정진우;정재훈;김인규;이승건
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 추계학술대회
    • /
    • pp.117-118
    • /
    • 2013
  • 최근 들어 전 세계적으로 항공모함과 첨단 구축함 등 대규모의 최신 함정위주의 해상전력을 강화하는 상황에서 잠수함의 중요성이 더욱 부각되고 있다. 이에 따른 잠수함의 운동조종을 위한 정밀한 동유체력 미계수 값이 운동방정식에서 요구된다. 수직면 평면운동시험(VPMM)장비를 이용한 동유체력을 측정하였다. 심도를 변화하면서 잠수함 모형에 상하요, 종요 운동을 각각 주었고, 이를 로드셀을 이용하여 힘과 모멘트를 각각 획득 하였다. 그 결과, 푸리에 해석을 통한 수중잠수함 모형의 동유체력 계수를 얻었다.

  • PDF

이진 격자 패턴 이미지를 이용한 비접촉식 평면 구동기의 면내 위치(x, y, $\theta$) 측정 방법 (A Novel Measuring Method of In-plane Position of Contact-Free Planar Actuator Using Binary Grid Pattern Image)

  • 정광석;정광호;백윤수
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.120-127
    • /
    • 2003
  • A novel three degrees of freedom sensing method utilizing binary grid pattern image and vision camera is presented. The binary grid pattern image is designed by Pseudo-Random Binary Arrays and referenced to encode in-plane position of a moving stage of the contact-free planar actuator. First, the yaw motion of the stage is detected using fast image processing and then the other planar positions, x and y, are decoded with a sequence of images. This method can be applied to the system that needs feedback of in-plane position, with advantages of a good accuracy and high resolution comparable with the encoder, a relatively compact structure, no friction, and a low cost. In this paper, all the procedures of the above sensing mechanism are described in detail, including simulation and experiment results.

간단한 정기구학을 갖는 평면운동용 병렬 매니플레이터의 구동영역 및 기구학적 특성 (Workspace and Kinematical Characteristics of Planar Parallel Manipulator with Simple)

  • 최기봉
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.97-104
    • /
    • 2003
  • This paper proposes a new parallel manipulator fur plane motion, and then discusses on the workspace and kinematical characteristics of the manipulator. The conventional planar parallel manipulators have some disadvantages which are complex non-closed type direct kinematics, workspaces containing useless voids, and concave type border tines of workspaces. The proposed planar parallel manipulator overcomes the above disadvantages, that is, the manipulator has simple closed type direct kinematics, a void-free workspace, and a convex type borderline of a workspace. This paper shows the simulation result of the workspace as well as performances indices using a homogeneous inverse Jacobian.