• Title/Summary/Keyword: Planar array

Search Result 224, Processing Time 0.028 seconds

Hollow SnO2 Hemisphere Arrays for Nitric Oxide Gas Sensing

  • Hoang, Nhat Hieu;Nguyen, Minh Vuong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.667-671
    • /
    • 2013
  • We present an easy method of preparing two-dimensional (2D) periodic hollow tin oxide ($SnO_2$) hemisphere array gas sensors using polystyrene (PS) spheres as a template. The structures were fabricated by the sputter deposition of thin tin (Sn) metal over an array of PS spheres on a planar substrate followed by calcination at an elevated temperature to oxidize Sn to $SnO_2$ while removing the PS template cores. The $SnO_2$ hemisphere array structures were examined by scanning electron microscopy and X-ray diffraction. The structures were calcined at various temperatures and their sensing properties were examined with varying operation temperatures and concentrations of nitric oxide (NO) gas. Their gas-sensing properties were investigated by measuring the electrical resistances in air and the target gases. The measurements were conducted at different NO concentrations and substrate temperatures. A minimum detection limit of 30 ppb, showing a sensitivity of S = 1.6, was observed for NO gas at an operation temperature of $150^{\circ}C$ for a sample having an Sn metal layer thickness corresponding to 30 sec sputtering time and calcined at $600^{\circ}C$ for 2 hr in air. We proved that high porosity in a hollow $SnO_2$ hemisphere structure allows easy diffusion of the target gas molecules. The results confirm that a 2D hollow $SnO_2$ hemisphere array structure of micronmeter sizes can be a good structural morphology for high sensitivity gas sensors.

The Rejection of the GPS Interference Mirror Image by using the Three-dimensional Array Antenna (3차원 구조 배열안테나를 적용한 GPS 간섭신호 미러 이미지 제거)

  • Kim, JunO;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.295-301
    • /
    • 2018
  • Recently, GPS(Global Positioning System) array antenna technology is generally used and widely adopted as a national infrastructure structure and aero-vehicles for protection the GPS signal reception. Until now, the 2-dimensional planar array is universally used for its applications in the array antenna signal processing, however relatively higher altitude air vehicles such as UAV experiences additional null zones induced by low altitude GPS interferences which is located in a symmetry zone of antenna horizontal plane and this could make the receiving antenna pattern coverage reduction. In this paper, we improved 20% of the beam pattern receiving performance and 13 dB correlation value improvement by eliminating the interference mirror images.

Development of Planar Active Electronically Scanned Array(AESA) Radar Prototype for Airborne Fighter (항공기용 평면형 능동 전자주사식 위상 배열(AESA) 레이더 프로토 타입 개발)

  • Chong, Min-Kil;Kim, Dong-Yoon;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1380-1393
    • /
    • 2010
  • This paper presents a design, fabrication and the test results of planar active electronically scanned array(AESA) radar prototype for airborne fighter applications using transmit/receive(T/R) module hybrid technology. LIG Nex1 developed a AESA radar prototype to obtain key technologies for airborne fighter's radar. The AESA radar prototype consists of a radiating array, T/R modules, a RF manifold, distributed power supplies, beam controllers, compact receivers with ADC(Analog-to-Digital Converter), a liquid-cooling unit, and an appropriate structure. The AESA antenna has a 590 mm-diameter, active-element area capable of containing 536 T/R modules. Each module is located to provide a triangle grid with $14.7\;mm{\times}19.5\;mm$ spacing among T/R modules. The array dissipates 1,554 watts, with a DC input of 2,310 watts when operated at the maximum transmit duty factor. The AESA radar prototype was tested on near-field chamber and the results become equal in expected beam pattern, providing the accurate and flexible control of antenna beam steering and beam shaping.

A Design for Mutual Coupling Suppression between Elements in Planar Array Antenna (평면 배열 안테나의 소자간 상호 결합 억압 설계)

  • Min Kyeong-Sik;Kim Dong-Jin;Park Chul-Keun;Moon Young-Min;Kim Young-Eil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents a novel method of mutual coupling suppression between antenna elements for performance improvement in planar array antenna system. Two miniature patch antenna elements satisfied IEEE 802.1 la($5.75\~5.35\;GHz,\;5.75\~5.85\;GHz$) are used for this research, they are arrayed by half wave length interval. It is observed about -20 dB mutual coupling between each antenna element at center frequency. To suppress mutual coupling, the arrayed antennas with a reversed 'U' structure are observed below -30 dB mutual coupling at IEEE 802.1la band.

Nondestructive Techniques for Characterization of Microstructural Evolution during Low Cycle Fatigue of Cu and Cu-Zn Alloy (Cu와 Cu-Zn 합금의 저주기피로 동안 발달한 미세조직 평가를 위한 비파괴기술)

  • Kim, Chung-Seok;Jhang, Kyung-Young;Hyun, Chang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The object of this study is to evaluate and discriminate nondestructively the dislocation substructures of Cu and Cu-Zn alloy subjected to the low-cycle-fatigue. The ultrasonic wave velocity, electrical resistivity and positron annhilation lifetime(PAL) were measured to the nondestructive testing. Cyclic fatigue test of Cu and Cu-Zn alloy with much different stacking fault energies was conducted and the correlations between dislocation behavior and nondestructive parameters were studied. Dislocation cell substructure was developed in Cu, while planar array of dislocation structure was developed in Cu-35Zn alloy only increasing dislocation density with fatigue cycles. Decrease in ultrasonic wave velocity, increase in electrical resistivity and PAL were shown because of the development of lattice defects, dislocations and vacancies, by cyclic fatigue at room temperature. In contrast to Cu-Zn alloy of the planar-array dislocation substructure showing continuous changes in the nondestructive parameters, it does not make any noticeable changes in the nondestructive parameters after the evolution of dislocation cell substructure in Cu.

Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement (전기비저항 측정에 의한 구리와 구리합금의 미시적 열화평가)

  • Kim, Chung-Seok;Nahm, Seung-Hoon;Hyun, Chang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.444-450
    • /
    • 2010
  • In the present study, the microscopic degradation of copper and copper alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue.

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Development of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder (50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 개발)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.413-422
    • /
    • 2011
  • An improved split-beam transducer for a 50 kHz fish-sizing echo sounder was developed. The main objective of this study was to minimize the side lobe level in the beam pattern and the distance between acoustic centers for adjacent transducer quadrants in the geometrical arrangement of array elements while maintaining a given number of transducer elements and beam width. To achieve these goals, a 32-element planar array transducer ($6{\times}6$ array with one element in each corner missing) was designed using the Dolph-Chebyshev shading function to suppress side lobes in the array beam pattern and fabricated by arranging the inter-element spacing to be substantially equal to half the wavelength using the transducer element of 0.4 times the wavelength in diameter. The performance characteristics of this split-beam transducer were evaluated in the experimental water tank of $5m{\times}5m{\times}6m$ (length${\times}$height${\times}$width). In this study, the design goal of the beam width and side lobe level for transmitting a beam pattern was initially set at $21^{\circ}$ and -30 dB, respectively. However, the measured beam width at 3 dB was $21^{\circ}$ in both directions with side lobe levels of -24.7 dB in the horizontal plane and -25.6 dB in the vertical plane. The averaged beam width at -3 dB of the receiving beam patterns for four receiving quadrants was $31.4^{\circ}$. The transmitting voltage response was 161.5 dB (re $1{\mu}Pa$/V at 1 m) at 50.23 kHz with a bandwidth of 2.16 kHz, and the averaged receiving sensitivity for four receiving quadrants was -178.13 dB (re 1 V/${\mu}Pa$) at 49.8 kHz with a bandwidth of 2.64 kHz.