• Title/Summary/Keyword: Planar Motion

Search Result 253, Processing Time 0.025 seconds

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.

Parameter Study of Position Keeping for Semi-submersible Offshore Structure by Tugs (Tug에 의한 반잠수식 해양 구조물 위치 유지를 위한 제반 파라메터 검토)

  • Lee, Jin Ho;Park, Jun Heum;Jang, Hag Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.274-279
    • /
    • 2014
  • This paper investigates the line dynamic forces connecting tugs and a floater, where the planar motion of the floater is due to the weather criteria during the position keeping of the offshore structure by tugs. The analysis situation consists of the position keeping states for the seabed mooring line connection work of the offshore structure at the offshore site. Specifically, the decision about the tug power capacity for the position keeping is essential and depends on the weather criteria, line characteristics, length of line, etc. The planar motion of the structure is constrained by the interference of the installation vessel's operational range, behavior of the underwater fairlead, and other surrounding structures. In this paper, the tug line forces and planar motion of an offshore structure are summarized dependent on the tug line length and line material characteristics in the states fora given floater draft and weather criteria. The tug line dynamic forces and planar motion evaluated here will be used to determine the proper tug power and clearance of an offshore structure.

Analysis of the Snake Motion of a Machine Tool Cross Head Assembly Travelling on Parallel Linear Motion Guides Using a Planar 2-D.O.F. Model (평면 2자유도 모델을 이용한 LMG 상에서 이동되는 Cross Head의 사행동 해석)

  • 최영휴;김성훈;정택수;장은성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-116
    • /
    • 2001
  • In this paper, a simple 2 D.O.F. planar motion model is proposed in order to analyze the snake motion of a machining center cross head assembly, that is travelling on linear guide rails. In the proposed mathematical model, the friction between head and guide ways is neglected, and also the support structures including guide rails, rear- and side-panels of the machining center are assumed to be rigid. The equations of motion of the proposed model are derived and successfully solved to determine vibration responses of the head assembly due to some applied traction forces.

  • PDF

Motion Estimation of 3D Planar Objects using Multi-Sensor Data Fusion (센서 융합을 이용한 움직이는 물체의 동작예측에 관한 연구)

  • Yang, Woo-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.57-70
    • /
    • 1996
  • Motion can be estimated continuously from each sensor through the analysis of the instantaneous states of an object. This paper is aimed to introduce a method to estimate the general 3D motion of a planar object from the instantaneous states of an object using multi-sensor data fusion. The instantaneous states of an object is estimated using the linear feedback estimation algorithm. The motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown planar object. We present a fusion algorithm which combines averaging and deciding. With the assumption that the motion is smooth, the approach can handle the data sequences from multiple sensors with different sampling times. Simulation results show proposed algorithm is advantageous in terms of accuracy, speed, and versatility.

  • PDF

Roll Motion Analysis of a 3 D.O.F. Planar Car Model using Instantaneous Centers (순간중심을 이용한 평면 3 자유도 자동차 모델의 롤 운동 해석)

  • Lee, Jae-Kil;Shim, Jae-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-98
    • /
    • 2006
  • In this paper, a planar car model with 3 degrees of freedom was analyzed using the concept of the roll center. To avoid ambiguity, force components which require experimental data were excluded. Only kinematic approach was used to find the position and orientation of the vehicle body and the position of the roll center. The roll center was found by the pole with infinitesimal movement and Kennedy-Aronhold theorem. Centrodes, which are the loci of instantaneous centers of planar motion, were constructed with analyzed results to show characteristics of vehicle body motion. To verify the presented analysis method in this paper, the locus of the roll center and the motion of a 3 D.O.F. planar car model were compared with those of the 1 D.O.F. model.

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

Estimation of 2D Position and Flatness Errors for a Planar XY Stage Based on Measured Guideway Profiles

  • Hwang, Joo-Ho;Park, Chun-Hong;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.64-69
    • /
    • 2007
  • Aerostatic planar XY stages are frequently used as the main frames of precision positioning systems. The machining and assembly process of the rails and bed of the stage is one of first processes performed when the system is built. When the system is complete, the 2D position, motion, and stage flatness errors are measured in tests. If the stage errors exceed the application requirements, the stage must be remachined and the assembly process must be repeated. This is difficult and time-consuming work. In this paper, a method for estimating the errors of a planar XY stage is proposed that can be applied when the rails and bed of the stage are evaluated. Profile measurements, estimates of the motion error, and 2D position estimation models were considered. A comparison of experimental results and our estimates indicated that the estimated errors were within $1{\mu}m$ of their true values. Thus, the proposed estimation method for 2D position and flatness errors of an aerostatic planar XY stage is expected to be a useful tool during the assembly process of guideways.

Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

  • Lee, Seong-Keon;Joung, Tae-Hwan;Cheon, Se-Jong;Jang, Taek-Soo;Lee, Jeong-Hee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

Directional Harmonic Wavelet Analysis (방향성 조화 웨이블렛 해석 기법)

  • 한윤식;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.267-272
    • /
    • 1998
  • A new signal processing technique, the directional harmonic wavelet map(dHWM), is presented to characterize the instantaneous planar motion of a measurement point in a structure from its transient complex-valued vibration signal. It is proven that the auto-dHWM essentially tracks the shape and directivity of the instantaneous planar motion, whereas the phase of the cross-dHWM indicates its inclination angle. Finally, the technique is successfully applied to an automobile engine for characterization of its transient motion during crank-on/idline/engine-off.

  • PDF