• Title/Summary/Keyword: Planar Coil

Search Result 72, Processing Time 0.019 seconds

Frequency Characteristics of 2-Layer Spiral Planar Inductor (2층 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4101-4106
    • /
    • 2011
  • In this study, we propose that the structures of 2-layer spiral planar inductors have a lower spiral coil and via increasing inductance in limited possession are and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The 2-layer spiral planar inductors have inductance of 3.2nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 8.2 at 2.5 GHz, SRF of 5.8 GHz. Otherwise, 1-layer spiral planar inductors have inductance of 1.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18 at 8 GHz, SRF of 19.2 GHz.

Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics (FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

A Design Method for Planar Minimum-Inductance Gradient Coils Considering Pole Piece Effect (Pole piece 효과를 고려한 MRI용 최소 인덕턴스 경사자계 코일 설계 기법)

  • 이수열;강현수;문찬홍;박현욱
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.537-544
    • /
    • 1999
  • 자기공명영상시스템의 경사자계코일을 영구자석의 자극에 부착할 경우 경사자계의 분포가 변하고 코일의 인덕턴스가 증가하는 현상이 생긴다. 본 논문에서는 이러한 자극효과를 고려하여 평면형 경사자계코일을 설계하는 방법을 제시하였다. 제사한 방법에는 자극 효과를 거울 전류로 모델링하였고, 모델링한 거울 전류를 고려하여 경사자계코일의 인덕턴스를 최소화하는 방법을 구했다. 또한 실제 상황과 가장 흡사한 자계 분포를 만들어주는 거울 전류의 크기를 구하기 위해 유한요소법을 적용하였다. 제시한 방법으로는 설계된 경사자계코일은 종래의 설계된 경사자계 코일에 비해 우수한 성능을 보였다.

  • PDF

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

Precision Stage Using A Novel Contact-Free Planar Actuator Based on Combination of Electromagnetic forces (전자기력 조합에 기초한 평면 구동기를 이용한 자기 부상 방식 초정밀 스테이지)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1863-1872
    • /
    • 2001
  • In this Paper, we suggest the precision stage using a novel non-contact planar actuator that utilizes an interaction between an array type of air-core solenoids and permanent magnets. The former with axes arranged in the mutually orthogonal direction is fixed on the stator and the latter with the same polar direction is attached below the stage. The promising magnetic structure has little uncertainty such as hysteresis loss caused by ferromagnetic material, then it is simple to quantify the magnetic phenomenon. And all the magnetic forces are transmitted through narrow air-gap between the coil and the permanent magnet, therefore the structure can be highly compacted. Furthermore, the stage or plate can be perfectly isolated from the stator without any wire connection, leading to diminish the generating possibility of wear particles due to mechanical contact. Then. it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness. or general-purpose nano stage. The main issues rebated to the plate driving are discussed here.

Fabrication of Planar Type Inductor Using FeTaN Magnetic thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.532-538
    • /
    • 2000
  • A double rectangular spiral inductor is fabricated using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of upper magnetic films over coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance : inductance of 1.1 H, Q factor of 7 (at 5 MHz), and the dc current capability up to 100 mA.

  • PDF

A study on the fabrication of double rectangular spiral thin film inductor (Double rectangular spiral thin film inductor의 제조에 관한 연구)

  • 김충식;신동훈;정종한;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.461-464
    • /
    • 1999
  • Planar type thin film inductors have a potential for the application of miniaturized DC-DC converters. For those high current applications, the magnetic film with high current capability is required. The current capability of magnetic films is mainly determined from high saturation magnetization (4$\piM_s$) as well as large anisotropy field $(H_k)$. We fabricated a double rectangular spiral thin film inductor which consist of magnetic layer, coil and insulator. Highest inductance values as well as best frequency characteristics can be obtained from 5 MHz and quality factor exhibit about 7.

  • PDF

Fabrication and Characteristics of Integrated Nb DC SQUID (집적화된 Nb DC SQUID 소자의 제작 및 특성)

  • Lee, Yong-Ho;Gwon, Hyeok-Chan;Kim, Jin-Mok;Park, Jong-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.277-281
    • /
    • 1992
  • We have designed, fabricated and tested an integrated planar DC SQUID which incorporates input coil and mofulation coil in thin film structure. The SQUID uses Nb /Al-oxide /Nb Josephson junctions and Pd shunt resistors, and the SQUID loop incorporates two rings connected in series forming figure '8' structure and has the advantage of a negligibly small circulating current for the spatially homogeneous noise fields. The devices were fabricated using photolithographic technique, RF magnetron sputtering, anodic oxidation for insulation and lift-off process. The preliminary test of the fabricated SQUID at 4.2 K showed that the flux-voltage characteristics were smooth enough to adopt standard readout system, and the voltage noise was too small to be measured by direct method and so the white noise was thought to be less than $10^{-4}\;{\phi}_o/\;\sqrt{H_z}$.

  • PDF

A STUDY ON MAGNETIC RESONANCE IMAGING OF THE TEMPOROMANDIBULAR JOINT (악관절에 대한 자기 공명 영상의 연구)

  • Kim Hyung Sik;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.187-198
    • /
    • 1990
  • Examinations of the temporomandibular joints were performed on a 1.5 Tesla magnetic resonance (MR) system. An MR surface receiver coil 3 inch in diameter was placed on plastic frame, the patient's head being placed in the frame so that the coil was pressed against the temporal region. In taking advantage of the magnetic resonance imaging that has been studied briskly till now, author obtained the images of parasagittal and paracoronal planes about the temporomandibular joint by using MPGR (Multi-Planar Gradient Recalled), GRASS (Gradient Recalled Acquisition in the Steady State), and CSMEMP (Contiguous Slice Multiple Echo, Multi-Planar), that differ from the Spin Echo pulse sequence which the previous authors used. Five subjects with no symptoms of temporomandibular joint pain and dysfunction were studied. The plane images obtained by these methods were compared with those by Spin Echo pulse sequence. The results were as follows: 1. The optimal repetition times (TR) and echo times (TE) for T.M.J. image were; a. 400 msec and 18 msec in PMGR pulse sequence. b. 40 msec and 12 msec in GRASS pulse sequence. c. 700 msec and 30 msec in CSMEMP pulse sequence. d. 500 msec and 20 msec in Spin Echo pulse sequence. 2. When the MPGR pulse sequence was using, T2-weighted image was obtained in very short time. On the image of the paracoronal plane by GRASS pulse sequence, meniscus showed the moderate signal intensity, and the meniscus and its anteromedial, posterolateral attachments were observed definitely with gray color. 4. The signal intensity of Spin Echo pulse sequence was equal to that of CSMEMP pulse sequence, but the image by CSMEMP pulse sequence showed relatively lower level in its resolution.

  • PDF

Design and Electromagnetic Characteristics of Planar Transformer (평면변압기의 설계와 전자기적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yeon;Kim, Jong-Ryung;Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.109-116
    • /
    • 2002
  • We designed the flyback planar transformer, which had 8 W capacity, with 70 V input voltage and 8.2 V output voltage for the establishment of design method and the confirmation of application possibility. The numerical value of inductance measured under the switching frequency of 120 kHz was 1650 $\mu$H, which was the inductance efficiency of'85∼87% against theoretical value. The A.C. resistance of primary and secondary coil was 4.2 Ω and 0.25 Ω respectively, On the other hand, the quality factor for each wound numbers showed quite a high value of 158 and 75 respectively. And the Coupling Factor was 0.96∼0.97 under 120 kHz switching frequency. The inductance rapidly increased as the thickness of the core plane increased until it became 1.4 mm but under the thickness more than 1.4 mm, there was no substantial change. Therefore, the critical value of the plane thickness of core was 1.4 mm. And the shape of the output wave of the planar transformer at 70V input voltage was a stable square wave.