DOI QR코드

DOI QR Code

2층 나선형 박막 인덕터의 주파수 특성

Frequency Characteristics of 2-Layer Spiral Planar Inductor

  • Kim, Jae-Wook (Department of Electronic Engineering, Namseoul University) ;
  • Ryu, Chang-Keun (Department of Electronic Engineering, Namseoul University)
  • 투고 : 2011.08.11
  • 심사 : 2011.09.08
  • 발행 : 2011.09.30

초록

본 논문에서 기존 underpass와 via를 갖는 단층 나선형 박막 인덕터를 확장하여 제한된 점유면적 내에서 인덕턴스를 증가시킬 수 있는 하층 나선형 코일과 via를 갖는 2층 나선형 박막 인덕터의 구조를 제안하고 주파수 특성을 확인하였다. 인덕터의 구조는 Si를 $300{\mu}m$, $SiO_2$$7{\mu}m$으로 하였으며, Cu 코일의 폭과 선간의 간격은 각각 $20{\mu}m$으로 설정하여 3회 권선하였다. 나선형 박막 인덕터의 성능을 나타내는 인덕턴스, quality-factor, SRF에 대한 주파수 특성을 HFSS로 시뮬레이션 하였다. 2층 나선형 박막 인덕터는 0.8~1.8GHz 범위에서 3.2nH의 인덕턴스, 2.5GHz에서 최대 8.2 정도의 품질계수를 가지며, SRF는 5.8GHz로 시뮬레이션 결과를 얻었다. 반면에 단층 나선형 박막 인덕터는 0.8~1.8GHz 범위에서 1.5nH의 인덕턴스, 8GHz에서 최대 18 정도의 품질계수를 가지며, SRF는 19.2GHz로 시뮬레이션 결과를 얻을 수 있었다.

In this study, we propose that the structures of 2-layer spiral planar inductors have a lower spiral coil and via increasing inductance in limited possession are and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The 2-layer spiral planar inductors have inductance of 3.2nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 8.2 at 2.5 GHz, SRF of 5.8 GHz. Otherwise, 1-layer spiral planar inductors have inductance of 1.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18 at 8 GHz, SRF of 19.2 GHz.

키워드

참고문헌

  1. Minda Denesh, John R. Long, "Differentially Driven Symmetric Microstrip Inductors", IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 1, pp. 332-341, Jan. 2002. https://doi.org/10.1109/22.981285
  2. I. Wolff and H. Kapusta, "Modeling of Circular Spiral Inductors for MMICs", IEEE MTT-s Digest, pp. 123-126, 1987. https://doi.org/10.1109/MWSYM.1987.1132341
  3. Myung-Hee Jung, Jae-Wook Kim, Eui-Jung Yun, "Development of High-Performance Solenoid-Type RF Chip Inductors", Jpn. J. Appl. Phys, vol. 39 (2000), pp. 4772-4776, Part 1, No. 8, August 2000. https://doi.org/10.1143/JJAP.39.4772
  4. Larson Le, "Integrated Circuit Technology Options for RFIC's Present Status and Future Directions", IEEE J. Solid-State Circuits, vol. 33, pp. 387-399, 1998. https://doi.org/10.1109/4.661204
  5. Mikkelsen JH, Kolding TE, "RF CMOS Circuits Target IMT-2000 Applications", Microwave & RF, pp. 99-107, July 1998.
  6. C. Patrick Yue, S. Simon Wong, "Physical Modeling of Spiral Inductors on Silicon", IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 560-567, March 2000. https://doi.org/10.1109/16.824729
  7. H. M. Greenhouse, "Design of Planar Rectan- gular Microelectronic Inductors", IEEE Transactions Parts, Hybrids, Pack, vol. PHP-10, pp. 101-109, June 1974. https://doi.org/10.1109/TPHP.1974.1134841
  8. C. Patrick Yue, S. Simon Wong, "On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's", IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998. https://doi.org/10.1109/4.668989