• Title/Summary/Keyword: Planar Anisotropic Sheet Metal

Search Result 12, Processing Time 0.026 seconds

FE analysis of Al sheet metal considering planar anisotropy (평면이방성을 고려한 알루미늄 판재의 유한요소해석)

  • 윤정환;양동열;송인섭;정관수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.44-54
    • /
    • 1994
  • A variational formulation and the associated finite elemet equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by BARLAT et al [13]. By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes are considered efficiently. In order to check the validity of present formulation, a cylindrical cup and a square cup deep drawing test was modeled. good agreement was found between the FE simulation and the experiment. The results have shown that the present formulation for planar anisotropic deformation can be efficiently applied to the analysis of sheet metal working processes for planar anisotropic nonferrous metals.

  • PDF

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes (탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Jeong, Gwan-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys (평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향)

  • ;F. Barlat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

The Effect of Planar Anisotropy in Plane-Stress Bore Expanding (평면 응력 Bore Expanding 에 있어서의 평면이방성 의 영향)

  • 주진원;이중홍;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.435-441
    • /
    • 1984
  • The matrix method, as an effective FEM formulation for the analysis of rigid-plastic deformation, was applied to the bore expanding of anisotropic sheet metal. The effect of planar anisotropy on sheet metal deformation was studied for bore expanding process under the uniform radial stretching condition, and the results were compared with isotropic and normal anisotropic solutions. Experiments were carried out using a flat punch for cold-rolled sheet metal. The experimental results were compared with computations from the matrix method with the boundary conditions corresponding to actual experiment. Both in theory and experiment, it is found that the maximum thinning which results in necking occurs in the direction of the minimum R-value. The results also suggest that the matrix method is efficient for analyzing planar anisotropic sheet metal. The comparison between theory and experiment suggests that Hill's theory of planar anisotropy is somewhat exaggerated. However, the theoretical predictions are in qualitative agreement with the experimental results.

Sheet Metal Forming Analysis with Planar Anisotropic Materials using a Modified Membrane Element considering Bending Effect (굽힘이 고려된 개량박막요소를 이용한 평면이방 박판금속 성형해석)

  • Choi, Tae-Hoon;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.183-187
    • /
    • 1997
  • A membrane element is regarded as more preferable rather than other elements in the sense of its computing efficiency and the merit with respect to contact treatment. However, it cannot consider the bending effect during the deformation. Moreover, due to the characteristics of rolling process, sheet metal has anisotropy with respect to the direction in the plane. To take the bending effect into account, a modified membrane element was introduced and improved to consider planar anisotropic characteristics with the aid of Hill's quadratic criterion.

  • PDF

Rigid-Plastic Finite Element Analysis of Anisotropic Sheet Metal Forming Processes by using Continuum Elements (연속체요소를 이용한 이방성 박판재료 성형공정의 강소성 유한요소해석)

  • 이동우;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.24-27
    • /
    • 1997
  • In the present work, rigid-plastic continuum elements employing the shape change and anisotropic effects are derived for the purpose of applying more realistic blankholding force condition in three-dimensional finite element analysis of sheet metal forming process. In order to incorporate the effect of shape change effectively in the derivation of finite element equation using continuum element for sheet metal forming, the convected coordinate system is introduced, rendering the analysis more rigorous and accurate. The formulation is extended to cover the orthotropic material using Hill's quadratic yield function. For the purpose of applying more realistic blankholding force condition, distributed normal and associated frictional tangent forces are employed in the blankholder, which is pressed normal and associated frictional tangent forces are employed in the blankholder, which is pressed against the flange until the resultant contact force with the blank reaches the prescribed value. As an example of sheet metal forming process coupling the effect of planar anisotropy and that of blankholding boundary condition, circular cup deep drawing has been analyzed considering both effects together.

  • PDF

An Improved Scheme for the Blank Holding Force in Sheet Metal Forming Analysis using the Modified Membrane Finite Element Considering Bending Effect (굽힘이 고려된 개량 박막 유한요소를 사용한 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구)

  • Choi, Tae-Hoon;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.347-355
    • /
    • 1999
  • The paper is concerned with an improved scheme for application of the blank holding force in order to take account of the thickness distribution in the sheet material of the flange region. The scheme incorporates with a modified membrane finite element method for planar anisotropic materials. The new scheme proposed two coefficients α and βto calculate the compressive stress in the sheet metal due to the blank holding force, which should be determined properly for accurate analysis. The effect of αand βon the blank holding force distribution and the deformed shape is investigated with simulation of rectangular cup deep drawing processes by changing parameter values.

  • PDF

Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method (강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석)

  • 김형종;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.