• Title/Summary/Keyword: Planar(top-top) structure

Search Result 24, Processing Time 0.028 seconds

A study on the electrical switching properties of oxide metal (산화금속의 전기적 스위칭 특성 연구)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • We have investigated the electrical properties of oxide metal thin film device. The device has been fabricated top-top electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of oxide metal thin film device. Fabricated oxide metal thin film device with MIM structure is changed from a low conductive Off-state to a high conductive On-state by the external linear voltage sweep. The $Si/SiO_2/MgO$ device is switched from a high resistance state to a low resistance state by forming. Consequently, we believe oxide metal is a promising material for a next-generation nonvolatile memory and other electrical applications.

  • PDF

A Three-Dimensional Particle Focusing Channel Using the Positive Dielectrophoresis (pDEP) Guided by a Dielectric Structure Between Two Planar Electrodes (두 평면 전극 사이의 절연체 구조물에 의해 유도되는 양의 유전영동을 이용한 삼차원 입자 정렬기)

  • Chu, Hyun-Jung;Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.261-264
    • /
    • 2009
  • We present a three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. The dielectric structure between two planar electrodes induces the maximum electric field at the center of the microchannel, and particles are focused to the center of the microchannel by pDEP as they flow from the single sample injection port. Compared to the previous 3D particle focusing methods, the present device achieves the simple and effective particle focusing function without any additional fluidic ports and top electrodes. In the experimental study, approximately 90 % focusing efficiency were achieved within the focusing length of 2mm, on both x-z plane (top-view) and y-z plane (side-view) for $2{\mu}m$-diameter polystyrene (PS) bead at the applied voltage over 15 Vp-p (square wave) and at the flow rate below 0.01 ${\mu}l$/min. The present 3D particle focusing channel results in a simple particle focusing method suitable for use in integrated microbiochemical analysis system.

Vertically Half Disc-Loaded Ultrawideband Monopole Antenna (VHDMA) with Horizontally Top-Loaded Small Disc (수평 원형 디스크가 로딩된 반원 디스크 초광대역 모노폴 안테나)

  • 이재욱;조춘식;김종면
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1051-1061
    • /
    • 2004
  • In this Paper, a new antenna(VHMDA) characteristics of half-circular/elliptical disc-loaded planar antennas with horizontally top-loaded small disc is studied by simulation and measurements with additional resonant structure. The transfer function characteristics of Gaussian pulse from the designed UWB transmitter antenna has been investigated. The radiation pattern of the proposed antenna in azimuth is nearly omni-directional response, which is usulally required in conventional monopole antenna. In addition to that, the simulation and measured results show that the return loss characteristics of VHDMA covers considerably large bandwidth with small area. From the measured results of the circular and half-circular disc-loaded monopole antennas with small disc mounted on the top, it is found that the half disc-loaded monopole antenna with additional structure can be comparable to the circular disc-loaded monopole antenna in respect o( size and electrical performances. Surface wave and dielectric losses often caused by the printed antenna using high dielectric constant does not occur in metallic planar antenna with good impedance matching and without lossy matching unit. This structure implies that the performance of return loss is directly related with the radiation efficiency.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

  • Hussain, Niamat;Kedze, Kam Eucharist;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of $5{\times}5$ metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels ($H=160{\mu}m$ and $H=80{\mu}m$), thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels ($H=40{\mu}m$ and $H=20{\mu}m$), it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

SIMULATION OF THIN-FILM FIELD EMITTER TRIODE

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.651-654
    • /
    • 2002
  • We carried out 2-dimensional numerical calculations of electrostatic potential for triode field emitters with planar cathodes using the finite element method. As it turned out, the conventional triode structure with a planar cathode suffered from large gate current and wide spreading of emitted electrons. To circumvent these shortcomings, we proposed a new triode structure. By simply inserting a conducting layer of proper thickness on top of the cathode layer, we were able to modify the electric field distribution on the cathode surface so that low gate current and electron-focusing effect were achieved, simultaneously.

  • PDF

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

A Compact Circular-Polarized Microstrip Antenna Using the Slit and Multi-Layer Structure (슬릿 구조와 다층 구조를 이용한 소형 원형 편파 마이크로스트립 안테나)

  • Cho, Sang-Hyeok;Pyo, Seong-Min;Kim, Jung-Min;Lee, In-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.296-302
    • /
    • 2009
  • In this paper, a planar microstrip patch antenna is proposed using the slit on the top layer of a multi-layered structure for GPS application. The proposed antenna has a circular polarization at 1,575.42 MHz. This proposed antenna is fabricated on multi-layered FR4 substrate. The slits embedded on the top plane may yield to lower a resonance frequency and sustain a broad bandwidth. The proposed antenna size is $20{\times}20{\times}4.0\;mm^3$. The measured gain of 0.5 dBi, 10 dB bandwidth(VSWR 2:1) of 70 MHz(4.4 %), and 3 dB axial-ratio bandwidth of 15 MHz(1 %) have been obtained, respectively.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Improvement of carrier transport in silicon MOSFETs by using h-BN decorated dielectric

  • Liu, Xiaochi;Hwang, Euyheon;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.97-97
    • /
    • 2013
  • We present a comprehensive study on the integration of h-BN with silicon MOSFET. Temperature dependent mobility modeling is used to discern the effects of top-gate dielectric on carrier transport and identify limiting factors of the system. The result indicates that coulomb scattering and surface roughness scattering are the dominant scattering mechanisms for silicon MOSFETs at relatively low temperature. Interposing a layer of h-BN between $SiO_2$ and Si effectively weakens coulomb scattering by separating carriers in the silicon inversion layer from the charged centers as 2-dimensional h-BN is relatively inert and is expected to be free of dangling bonds or surface charge traps owing to the strong, in-plane, ionic bonding of the planar hexagonal lattice structure, thus leading to a significant improvement in mobility relative to undecorated system. Furthermore, the atomically planar surface of h-BN also suppresses surface roughness scattering in this Si MOSFET system, resulting in a monotonously increasing mobility curve along with gate voltage, which is different from the traditional one with a extremum in a certain voltage. Alternatively, high-k dielectrics can lead to enhanced transport properties through dielectric screening. Modeling indicates that we can achieve even higher mobility by using h-BN decorated $HfO_2$ as gate dielectric in silicon MOSFETs instead of h-BN decorated $SiO_2$.

  • PDF