• Title/Summary/Keyword: Plain water

Search Result 448, Processing Time 0.024 seconds

Comparison of Two-Dimensional Model for Inundation Analysis in Flood Plain Area (홍수시 둔치구간의 수리해석을 위한 2차원 모형 비교)

  • Ku, Young Hun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.93-102
    • /
    • 2014
  • In the flood plain, river facilities such as sports facilities and ecological park are builded up since the late 2000s. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and river facilities located in the flood plain. Therefore it is necessary to perform the numerical analysis for the extreme rain storm in the flood plain. In this study, to analyze the hydraulic impact by lowering and rising of the water level at flood plain, Both the FaSTMECH, which is a quasi-unsteady flow analysis model to be used for simulating the wet and dry, and the Nays2D, which is unsteady flow analysis model, are used in this study. Also, the flow velocity distribution and the inundation are compared over a period of the typhoon. As a result, the flow velocity distribution at flood plain showed very low values compared to the flow rate in the main channel. This means that the problem of sedimentation is more important than that of erosion in the flood plain.

Experimental Study on the Fire Extinguishing Characteristics of Water Mist System (미분무수 소화설비의 소화특성 실험)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Oh, Kyu-Hyung;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.78-84
    • /
    • 2009
  • We carried out fire extinguishing experiments with three kinds of water mist nozzle system. Fire extinguishing experiment according to installed nozzle height and fuel pan location was done. And fire extinguishing performance was compared with plain water and foam agent mixed solution. Water mist nozzle height was varied with 4m, 3.5m and 3m and position of fuel fan was varied 0.5m and 1m from the center of water mist nozzle. Foam agent that used in this experiment is 3% type of AFFF (Aqueous Film Forming Foam) solution. Experimental result showed the door opening effect was little. Fire extinguishing performance of foam agent mixture water mist was better than the plain water mist only.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Characteristics of Molluscan Community Structure and Relationship between the Structure and Environmental Variables in Abyssal Plain of the East Sea (동해 심해저 연체동물 군집구조 특성 및 군집구조와 환경요인과의 상관성)

  • Son, Min Ho;Jung, Jik Young;Kim, Chang Joon;Choi, Ki Young
    • The Korean Journal of Malacology
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2016
  • Study on characteristics of the molluscan community structure and relationship between the structure and environmental variables in the abyssal plain of the East Sea was carried out for 5 years, starting from 2009 until the end of 2015 except 2010 and 2011. The water depth at the study site is approximately 1,600 m at minimum, and maximum depth of 2,000 m and a total of 16 molluscan species including Aplacophora, Gastropoda and Bivalvia were observed. Species with the highest biomass was Thyasira tokunagai, followed by Yoldiella philippiana which were observed at 9 sampling stations every year. Among 4 sampling stations having various depths (1,600/ 1,700/ 1,800/ 2,000 m), the highest diversity for species was observed at water depths of 1,600 m and 1,700 m, but found the lowest at 1,800 m. Both abundance and biomass were found to be negative correlations with water depth (p < 0.05), however, showed a positive correlation with the concentrations of organic matters (p < 0.01, p < 0.05). However, it is interesting to note that both Thyasira tokunagai (biomass, 82.6%; abundance, 44.1%) and Yoldiella philippiana (biomass, 15.9%; abundance, 4.7%) did not show distinctive correlations with water depth as well as concentrations of organic matters (p > 0.05). Therefore, it could be concluded that community structure of both Thyasira tokunagai and Yoldiella philippiana did not appear to be affected by water depth and concentrations of organic matters but geographical characteristics.

A Study on the Improvement of Condensation and Boiling Heat Transfer on Horizntal Tube by Fin Effect(l)-Shellside Boiling- (수평 원형전열관의 핀효과에 의한 응축 및 비등 열전달촉진에 관한 연구 (1)-튜브외부 비등-)

  • 한규일;조동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1264-1274
    • /
    • 1994
  • Heat transfer performance of integral-fin tube which is used in recipro turbo refrigerator or high compact heat exchangers is studied. Eight tubes with trapezoidal shaped integral-fins having fin densities from 748 to 1654 fpm and 10, 30 internal grooves are tested. A plain tube having the same(inner and outer) diameter as the fin tubes is also tested for comparison. Pool boiling heat transfer of R-11 is investigated experimentally and theoretically on single tube arrangement. The refrigerant evaporates at saturation state of 1 bar on the outside tube surface and heat is supplied by not water which circulates inside of the tube. From the result of eight fin tubes and one plain tube tested, a tube having 1299 fpm-30 grooves shows the best performance. A maximum overall heat transfer coefficient of this tube is about 4000 $W/m^{2}K$ at 2.8m/s of water velocity. The maximum heat transfer enhancement (i.e., the ratio of overall heat transfer coefficients of finned to plain tubes)is about 2.1.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

RAINFALL SEASONALITY AND SAMPLING ERROR VARIATION

  • Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • The variation of sampling errors was characterized using the Waymire-Gupta-Rodriguez-Iturbe multi-dimensional rainfall model(WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considered are those for using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of monthly rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather normal to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain arean than in the down stream plain area.

  • PDF

Sampling Error Variation due to Rainfall Seasonality

  • Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.7-14
    • /
    • 2001
  • In this study, we characterized the variation of sampling errors using the Waymire-Gupta-rodriguez-Iturbe multi-dimensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considering in this study are those far using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of mentally rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather norma1 to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the down stream plain area.

  • PDF

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.