The seniconductor, which is precision product, requires many inspection processes. The surface conditions of the semiconductor chip effect on the functions of the semiconductors. The defects of the chip surface is crack or void. Because general inspection method requires many inspection processes, the inspection system which searches immediately and preciselythe defects of the semiconductor chip surface. We propose the inspection method by using the computer vision system. This study presents an image processing algorithm for inspecting the surface defects(crack, void)of the semiconductor test samples. The proposed image processing algorithm aims to reduce inspection time, and to analyze those experienced operator. This paper regards the chip surface as random texture, and deals with the image modeling of randon texture image for searching the surface defects. For texture modeling, we consider the relation of a pixel and neighborhood pixels as noncasul model and extract the statistical characteristics from the radom texture field by using the 2D AR model(Aut oregressive). This paper regards on image as the output of linear system, and considers the fidelity or intelligibility criteria for measuring the quality of an image or the performance of the processing techinque. This study utilizes the variance of prediction error which is computed by substituting the gary level of pixel of another texture field into the two dimensional AR(autoregressive model)model fitted to the texture field, estimate the parameter us-ing the PAA(parameter adaptation algorithm) and design the defect detection filter. Later, we next try to study the defect detection search algorithm.
본 연구개발에서는 정해진 환경에서 최대의 불량검출 능력을 발휘할 수 있도록 공정을 개선하기 위하여 전게이트 시각검사에 필수적인 FGV 패턴발생 장치와 공정제어 장치를 개발하였다. 본 연구개발을 통하여 접촉손실(Tact Loss)을 0에 근접 한 수준으로 유지할 뿐만 아니라 손실 및 에러 발생시 신속한 대처가 가능하여 모듈의 수율을 향상시킬 수 있을 것으로 기대된다. 또한 세부 동작 시퀀스를 제어하기 위한 H/W와 S/W 시스템을 생산라인에 실장하고 성능점검 및 인증을 수행한 결과 Tact에 의한 Pixel 불량의 경우는 98.1%, Line 불량의 경우는 99.1%의 검출율을 나타내었으며, Gate 및 Visual 레벨 테스트를 포함한 모듈공정 전체의 수율이 98.3%까지 증가하였다.
Kim, Seung-Bum;Im, Yong-Jo;Kim, Kum-Lan;Park, Hye-Sook;Park, Sung-Ok
대한원격탐사학회지
/
제20권1호
/
pp.47-55
/
2004
We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced by global data centers, to our knowledge, this is the first attempt to process 10-minute long direct-broadcast (DB) data. We found that the processor designed for a granule needs modification to apply to the DB data. The modification includes the correction to path number, the selection of land mask and the manipulation of dummy scans. Pixel-to-pixel comparison with a reference indicates the difference in brightness temperature of about 0.2 K rms and less than 0.05 K mean. The difference comes from the different length of data between 50-minute granule and about 10-minute DB data. In detail, due to the short data length, DB data do not always have correct cold sky mirror count. The DB processing system is automated to enable the near-real time generation of brightness temperatures within 5 minutes after downlink. Through this work, we would be able to enhance the use of AMSR-E data, thus serving the objective of direct-broadcast.
Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.
In this study, we apply a deep learning model to denoising solar magnetograms. For this, we design a model based on conditional generative adversarial network, which is one of the deep learning algorithms, for the image-to-image translation from a single magnetogram to a denoised magnetogram. For the single magnetogram, we use SDO/HMI line-of-sight magnetograms at the center of solar disk. For the denoised magnetogram, we make 21-frame-stacked magnetograms at the center of solar disk considering solar rotation. We train a model using 7004 paris of the single and denoised magnetograms from 2013 January to 2013 October and test the model using 1432 pairs from 2013 November to 2013 December. Our results from this study are as follows. First, our model successfully denoise SDO/HMI magnetograms and the denoised magnetograms from our model are similar to the stacked magnetograms. Second, the average pixel-to-pixel correlation coefficient value between denoised magnetograms from our model and stacked magnetogrmas is larger than 0.93. Third, the average noise level of denoised magnetograms from our model is greatly reduced from 10.29 G to 3.89 G, and it is consistent with or smaller than that of stacked magnetograms 4.11 G. Our results can be applied to many scientific field in which the integration of many frames are used to improve the signal-to-noise ratio.
Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.
Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.
본 논문은 MR 머리 영상 데이타를 디렉트 볼륨 렌더링하는 방법을 제안한다. MR 영상을 가시화하기 위해서는 서피스 렌더링을 많이 사용하나 이 방법은 면을 추출하는 과정에서 면 내부의 정보를 잃어버린다. 디렉트 볼륨 렌더링은 면 내부의 정보를 추출 할 수 있으나 데이타의 특성상 MR 머리 영상 데이타에 이 방법을 적용하기가 쉽지 않다. 이 논문에서는 MR 머리 영상 데이타를 뇌와 뇌 이외의 구성 요소로 분할한 다음에 뇌 복셀값을 증가시키고 원래의 영상과 다시 결합시켜 디렉트 볼륨 렌더링을 시도하였다. 뇌 경계선은 히스토그램 경계값, 모포로지 연산, 스네이크 알고리즘(snakes algorithm)을 이용하여 추출하였다. 추출된 뇌 경계선는 육안으로 추출한 것의 91~95%의 유사도를 보인다. 제안된 디렉트 볼륨 렌더링은 뇌와 뇌 이외의 구성 요소를 동시에 3차원 가시화하였다.
본 논문에서는 영상의 에지 검출을 수행하기 위한 퍼지 규칙을 학습하는 퍼지 분류자 시스템을 제안한다. 퍼지 분류자 시스템은 기계학습의 방법을 퍼지 논리의 개념에 적용한 것이다. 즉 분류자의 조건부와 행동부는 퍼지 규칙에서위 전건부와 후건부와 같은 것이 된다 퍼지 규칙을 진화에 의해 획득하는 방법론으로는 크게 미시간 접근법과 피츠 접근법이 있으며, 본 논문에서는 미시간 방법의 퍼지 분류자 시스템을 사용한다. 미시간 접근방법은 하나의 퍼지 IF-THEN 규칙이 진화연산의 직접적인 진화 대상이 되는 하나의 개체로 코드화된다. 또한 퍼지 분류자 시스템은 유전 알고리즘을 사용하여 새로운 규칙을 생성하거나 규칙을 수정하여 시스템의 성능을 향상시킨다. 제안된 방법은 영상 처리와 컴퓨터 비전 분야에서 인식과 구분ㅇ르 수행하기 위한 전처리 단계에 해당하는 에지 검출에 적용하여 그 유효성을 검증한다. 즉, 영상엣 한 픽셀이 이웃하는 픽셀들의 평균 그렝 레벨의 차리를 퍼지 집합으로 표현하고 퍼지 IF-THEN 규칙을 사용하여 에지를 검출하고, 이것을 Sobel 에지 검출방법으로 얻어진 결과와 비교하여 에지 검출에 사용된 규칙의 유용성을 판단한다.
본 논문에서는 XOR 연산을 위상 변조하여 만든 위상 변조 XOR(phase-encoded exclusive-OR) 연산이라는 개념을 기본으로 그레이 영상을 암호화 한 새로운 광 암호화 방법을 제안하였다 그레이 원 영상을 이진 영상들의 합으로 분리한 후 각각의 이진 영상들을 이진 무작위 영상들과 위상변조 XOR 연산 방법을 이용해 암호화하고, 이를 위상 변조하여 암호화된 데이터를 만들었다. 그리고 복호화에 필요한 키 데이터는 암호화 시 사용한 무작위 이진 영상들로 만든 무작위 그레이 영상을 위상 변조하여 구하였다 암호화된 데이터는 위상 변조로 인한 비선형성과 비가시적 특성을 가지므로 기본적으로 높은 정보보호의 특성이 있으나, 여기에 위상정보 자체를 암호화함으로써 보다 높은 수준의 정보 보호를 가능하게 하였다. 또한, 복호화 과정은 암호화 데이터와 키 데이터의 단순 곱과 기준파와 간섭을 이용하므로, 원 영상 복원 시 간단한 위상 시각화 시스템(phase-visualization system)으로 구현할 수 있다. 컴퓨터 시뮬레이션을 통해 제안한 방법의 구현 가능성과 타당성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.