적은 수의 광센서를 사용하는 검출기를 설계하고, 최대우도함수를 통해 감마선과 상호작용한 섬광 픽셀의 위치를 디지털 위치로 측정하는 연구를 수행하였다. 이를 위해 섬광체 내에서 빛의 이동을 모사할 수 있는 DETECT2000을 사용하여 시뮬레이션을 수행하였으며, 위치 측정의 정확도를 평가하였다. 6 × 6의 섬광 픽셀 배열과 4개의 광센서를 사용하여 검출기를 구성하였으며, 각 섬광 픽셀 중심에서 감마선 이벤트를 발생시켜 수집된 빛의 비율을 통해 순람표를 작성하였다. 새로운 위치에서 발생된 감마선 이벤트를 최대우도함수의 입력값으로 적용하여 순람표와 비교후 섬광 픽셀의 위치를 디지털 위치로 변환하였다. 모든 섬광 픽셀들에서 평가하였으며, 그 결과 99.1%의 높은 정확도를 획득하였다. 이러한 방법을 현재 사용되는 시스템에 적용할 경우 섬광 픽셀의 위치를 판별하는 과정의 간소화를 이룰 것으로 판단된다.
Skew correction for document images can be using a rotational transformation of pixel coordinates. In this paper we propose a method which corrects the document skew, by an amount of $\theta$ degrees, using block information, where the block is defined as a rectangular area containing adjacent black pixels. Processing speed of the proposed method is faster than that of the method using pixel transformation, since the number of floating-point operations can be reduced significantly. In the proposed method, we rotate only the four corner points of each block, and then identify the pixels inside the block. Two methods for inside pixel identification are proposed; the first method finds two points intersecting the boundary of the rotated block in each row, and determines the pixels between the two intersection points as the inside pixel. The second method finds boundary points based on Bresenham's line drawing algorithm, using fixed-point operation, and fills the region surrounded by these boundaries as black pixels. We have measured the performance of the proposed method by experimenting it with 2,016 images of various English and Korean documents. We have also proven the superiority of our algorithm through performance comparison with respect to existing methods based on pixel transformation.
A scalable parallel algorithm is proposed for efficient image component labeling with local operatos on a mesh connected SIMD computer. In contrast to the conventional parallel labeling algorithms, where a single pixel is assigned to each PE, the algorithm presented here is scalable and can assign m$\times$m pixel set to each PE according to the input image size. The assigned pixel set is converted to a single pixel that has representative value, and the amount of the required memory and processing time can be highly reduced. For N$\times$N image, if m$\times$m pixel set is assigned to each PE of P$\times$P mesh, where P=N/m, the time complexity due to the communication of each PE and the computation complexity are reduced to O(PlogP) bit operations and O(P) bit operations, respectively, which is 1/m of each of the conventional method. This method also diminishes the amount of memory in each PE to O(P), and can decrease the number of PE to O(P2) =Θ(N2/m2) as compared to O(N2) of conventional method. Because the proposed parallel labeling algorithm is scalable, we can adapt to the increase of image size without the hardware change of the given mesh connected SIMD computer.
본 논문은 검출기의 포화과정을 반영한 비선형 모델의 잡음 특성을 분석하고, 그러한 분석결과를 영상 신호-잡음비(Image SNR)의 분포도를 계산하기위하여 적용한다. 특별히, 검출 화소의 비선형성은 잡음분포(PDF)의 비대칭성과 화소 신호-잡음비(Pixel SNR)의 증폭이라는 두 가지 관점에서 분석되며, 제안된 영상 신호-잡음비 분포도를 이용하여 위성의 발사 후에 카메라 이득의 변화나 기타 상황에서도, 궤도상에서 최적의 위성 카메라 운영 변수들(노출시간, 누적횟수)을 얻을 수 있음이 주요한 특징으로 강조된다.
본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.
적은 수의 광센서를 사용한 PET 검출기의 섬광 픽셀과 광센서의 매칭 비율을 최대화하기 위해 다양한 섬광 픽셀의 배열과 4개의 광센서를 사용하였다. 섬광 픽셀의 배열은 6 × 6에서부터 11 × 11까지 여섯 케이스로 구성하였다. 광센서간의 간격은 모든 섬광 픽셀에서 동일하게 적용하였으며, 섬광 픽셀의 크기를 줄여 배열을 확장하였다. 설계한 PET 검출기들의 평면 영상 획득을 위해 빛 시뮬레이션이 가능한 DETECT 2000을 사용하였다. 각 섬광 픽셀 배열의 중심에서 소멸방사선과 섬광 픽셀의 상호작용을 통해 생성된 빛을 발생시켜, 4개의 광센서를 통해 빛을 검출한 후 평면 영상을 재구성하였다. 재구성한 평면 영상을 통해 모든 섬광 픽셀들이 구분이 가능한 최대의 배열을 찾았다. 그 결과 8 × 8 섬광 픽셀 배열의 평면 영상에서 모든 섬광 픽셀들이 구분이 가능하였으며, 9 × 9 섬광 픽셀 평면 영상에서부터는 가장자리 두 섬광 픽셀들이 서로 겹쳐 영상에 나타났다. 이때의 섬광 픽셀과 광센서의 매칭 비율은 16:1이었다. 본 검출기를 사용하여 PET 시스템을 구성할 경우, 사용하는 광센서의 수가 감소되고 이에 따른 신호처리 회로의 간소화를 통해 전체 시스템의 비용을 감소시킬 것으로 기대된다.
스테가노그래피는 수신자와 송신자간에 비밀 정보를 제 3자가 알아차리지 못하게 통신하는 기법으로 수천 년 전부터 군사적, 외교적 또는 사업적인 정보들의 전달을 위해서 발달해 왔다. 현대에 이르러서는 디지털 미디어와 통신의 발달로 스테가노그래피의 기법이 더욱 발달하게 되었다. 이 중 영상을 활용하는 스테가노그래피의 기법들은 픽셀에 삽입 비트의 양을 고정하는 LSB, 이웃한 픽셀 쌍의 값 차이를 활용한 PVD등이 있다. PVD 영상 스테가노그래피의 경우 이웃한 픽셀 쌍의 값의 차이와 설계한 range table에 따라서 삽입하는 비밀 정보량을 유동적으로 하여 많은 양의 정보를 삽입한다. 하지만 비밀 정보를 순서대로 삽입하기 때문에 특정 픽셀 쌍에서 삽입하는 정보량에 오류가 발생하면 그 이후의 정보들 모두 오류를 발생시킨다. 본 논문에서는 이러한 PVD의 특성이 갖는 오류나 외부 공격에 대한 취약점을 보완하고 비밀 정보를 추출 할 수 있는 방법을 제안한다. 실험의 방법은 다양한 잡음들을 스테고 영상에 삽입해서 삽입 된 비밀 정보를 비교하고 분석한다. 기존의 PVD는 잡음에 대해서 전혀 비밀 정보의 보존이 불가능하지만 제안된 지역적 삽입 비트 고정 PVD의 경우에는 스테고 영상의 부분적인 잡음에 대해서 비밀 정보를 강건하게 추출할 수 있음을 확인하였다.
To understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we conduct a case study on the BCGs in dynamically young and old clusters, Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color-magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the CFHT observations. (1) While the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness indicates that the A2589-BCG formed a larger central body by major dry mergers at an early epoch than the A1139-BCG, while they have grown commonly by subsequent minor mergers. (3) The spatial distributions of the pixels with deviated colors reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core possibly resulting from major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results imply that the BCG in the dynamically older cluster (A2589) formed earlier and is relaxed better.
본 논문에서는 MPEG(Moving Picture Experts Group) 영상 디코더에서 영상을 압축, 비교, 복원, 저장한후 디코딩 처리하는 방법을 종래의 픽셀 단위로 처리하는 방법과는 다르게 영상의 단위 화소 주변을 군집화소로 분류한 후 이를 클러스터링하여 오버랩정도를 결정 한다. 오버랩 정도의 임계치값을 결정하는데는 패턴식별을 취한후 샘플 패턴에 대한 기하구조의 파악과 결정함수의 도출로 활용된다. 특징공간이 4차원 이상이면 주어진 패턴 구조를 시각적으로 관찰할 수 없다. 이 때, 분포구조를 고찰해 볼수 있는 방법은 군집중심간의 거리, 군집별 패턴의 수 및 표준편차 등을 이용하는 방법이다. 임계치 값을 넘는 중복화면은 소거되고 넘지않는 군집화면은 패턴인식으로 복원된후 동영상으로 구현된다. 이방법이 기존의 픽셀 단위 처리하는 방법 과는 20%정도의 메모리 감축과 15%정도의 화면 복원에 성능이 향상된 것으로 판정된다.
This paper proposes the extension of the dynamic range in complementary metal oxide semiconductor (CMOS) image sensors (CIS) using switching operation of in-pixel inverter. A CMOS inverter is integrated in each unit pixel of the proposed CIS for switching operations. The n+/p-substrate photodiode junction capacitances are added to each unit pixel. When the output voltage of the photodiode is less than half of the power supply voltage of the CMOS inverter, the output voltage of the CMOS inverter changes from 0 V to the power supply voltage. Hence, the output voltage of the CMOS inverter is adjusted by changing the supply voltage of the CMOS inverter. Thus, the switching point is adjusted according to light intensity when the supply voltage of the CMOS inverter changes. Switching operations are then performed because the CMOS inverter is integrated with in each unit pixel. The proposed CIS is composed of a pixel array, multiplexers, shift registers, and biasing circuits. The size of the proposed pixel is $10{\mu}m{\times}10{\mu}m$. The number of pixels is $150(H){\times}220(V)$. The proposed CIS was fabricated using a $0.18{\mu}m$ 1-poly 6-metal CMOS standard process and its characteristics were experimentally analyzed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.