• 제목/요약/키워드: Pitching Analysis

검색결과 157건 처리시간 0.024초

축대칭 발사체의 감쇠계수 계산을 위한 정상 해법 (A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles)

  • 박수형;권장혁;유영훈
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.1-8
    • /
    • 2006
  • 축대칭 발사체의 동적 감쇠계수를 계산하기 위한 정상 예측 방법을 제안한다. 관성좌표계에서 영스핀 코닝 운동을 사용한 정상 해법을 적용하기 위해서는 점성유동 해석이 필수적으로 이루어져야 한다. 제안된 방법을 회전발사체에 적용하여 피칭모멘트와 피치감쇠 모멘트계수를 계산하였다. 결과는 포물형 Navier-Stokes 예측 결과, 실험결과, 비정상 예측 결과와 잘 일치함을 확인하였다. 또한, secant-ogive-cylinder 계열 발사체에 대한 정적 및 동적 계수의 축방향 생성과정을 살펴봄으로써 후방동체의 형상으로 인한 유동 변화가 동적 안정성에 미치는 영향을 고찰하였다.

클럽별 골프 스윙 시 지면 반력 변화에 관한 연구 (A Study of Ground Reaction Forces During Professional Golfer's Swing with Different Golf Clubs)

  • 허유진;문건필;임정
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.103-111
    • /
    • 2005
  • The purpose of this study was to analysis golf swing in accordance with each club using ground reaction force data. The subject of this study was current professional golf players in Korea. Golf clubs used for this study were driver, iron4, iron7, and pitching. The ground reaction force for left and right foot was collected by one Kistler and one Bertec force platforms. Also collected visual data by NC high speed camera to check the phase which was composed of address, top of backswing, impact and finish. Sampling rate was 600Hz both ground reaction forces data and visual data. The conclusion are as follows. 1. An aspect of change for ground reaction force was that the weight between the left foot and right foot were contrary to each other in general as the phase. 2. Without regard to the type of golf club, the ratio of necessary ground reaction forces for each phase in accordance with address, top of backswing, impact, and finish was comparatively identical. 3. According to the type of golf club, the tendency of Fy was not varied. In terms of Driver, at the moment of impact, the weight of foot-both right and left-was moved to the movement direction of golf because of the rotation force from swing.

대학 야구 강의를 통한 초보자의 타격 동작 변화 분석 (The Analysis on the Changes in Beginners Batting Movements through Undergraduate Baseball Lectures)

  • 천영진
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.277-284
    • /
    • 2012
  • The purpose of this study was to find out the changes in beginners' batting movements after taking undergraduate baseball lectures, by comparing and analyzing the speed of bat, the angle of body and its segments, the angular velocity and so on. For this purpose, the author picked up five undergraduates who had not taken baseball lectures, and conducted three-dimension computerized tomography twice on them, that is, before and after taking baseball classes, with eight infrared cameras and two force platforms. The conclusions are, first, the time required for swing was shortened after taking the classes. Second, the maximum velocity of the bat-end was increased. Third, at the time of impact, while the rotation angles of the pelvis and the tip of left foot were increased, the left elbow had more flexion after the classes. Fourth, the size of ground reaction force was increased at the point of swing where the ground reaction force of left foot became maximized. As we can infer from these conclusions, beginners' hitting movements before taking baseball classes tended to swing only with the arms, without waist rotation and weight shift of the lower body, but after the classes, their movements were proved to be corrected into the swing using the lower body. For the future studies, the author expects a research in a close to real environment by using pitching machine.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

국내 P공항의 부지 제한조건을 고려한 로컬라이저의 최적위치 선정에 관한 연구 (A Study on Determination for Location of Localizer Antenna under Area Restrictive Conditions at Domestic P-Airport)

  • 조환기;김종범;송병흠
    • 한국항공운항학회지
    • /
    • 제23권2호
    • /
    • pp.7-14
    • /
    • 2015
  • This paper deals with an optimal determination process for the built-in location of localizer under restrictive siting area conditions of a domestic P-airport. Aerodynamic forces and moments acting on the localizer structure can be used a reference to find the safe distance from jet blast and the position at which the reasonable structural loading is applied. Wind tunnel experiment is conducted to measure aerodynamic loadings. The finite element analysis for structural deformation is employed to get the information of structural failure. A new localizer's position is determined by considering aerodynamic loading, structural strength and thermal loading due to jet blast. Deflector effect was also investigated in this study. In conclusion, the location of localizer can be placed at shorter than the current position and greatly decreased if the deflector is applied at the front of localizer.

피치 진동하는 타원형 에어포일의 환산주파수가 날개 주위 유동패턴에 미치는 영향 (Effect of Reduced Frequency on the Flow Pattern of Pitch Oscillating Elliptic Airfoil)

  • 이기영;정형석;손명환
    • 한국군사과학기술학회지
    • /
    • 제9권4호
    • /
    • pp.128-136
    • /
    • 2006
  • The purpose of this paper is to examine the dynamic stall characteristics of an elliptic airfoil when subject to constant pitch motions. In this study, which was motivated by the pressing need for a greater understanding of the reduced frequency$({\kappa})$ effects on flow patterns of elliptic airfoil, the various reduced frequencies were considered. The result confirms that the reduced frequency has a profound effects on the flow patterns. The increase of ${\kappa}$ accelerate the separation bubble bursting process up to ${\kappa}=0.10$, then diminish with further increase in ${\kappa}$. Compared with static condition, the dynamic pitching airfoil delays stall angle approximate $4{\circ}{\sim}5{\circ}$ during pitch-up stroke for ${\kappa}=0.10$. Results from this qualitative analysis provided valuable insight Into the control of dynamics stall.

6자유도 호버링 AUV의 설계 및 제어 (Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV)

  • 정상기;최형식;서정민;;김준영
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.

페어링을 이용한 벨리 스팅 모형지지부의 직접 간섭효과 감소방안 연구 (Study for Reducing the Near Field Interference of Belly Sting Model Support with Fairing)

  • 김남균;이재호;차경환;고성호
    • 한국항공우주학회지
    • /
    • 제48권10호
    • /
    • pp.753-763
    • /
    • 2020
  • 29.7% 축소 NASA Common Research Model을 벨리 스팅 모형지지부에 장착하여 저속에서 풍동시험을 수행하였다. 다양한 형상의 페어링을 장착한 벨리 스팅 모형지지부에 대하여 공력계수를 측정하는 시험을 수행하였으며 그 결과를 고찰하였다. 벨리 스팅 모형지지부에 장착된 CRM 형상을 이용하여 힘과 모멘트를 측정하였다. 벨리 스팅 페어링 형상 변화에 따른 피칭모멘트로부터 벨리 스팅 간섭 효과를 감소시키는 형상을 찾았다. 전산해석을 통해 벨리 스팅 모형지지부의 간섭과 시험부 페어링의 간섭 감소효과를 확인하였다.

초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구 (Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload)

  • 노승국;박천홍;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF