• Title/Summary/Keyword: Pitch error

Search Result 258, Processing Time 0.024 seconds

Prediction of Closed Quotient During Vocal Phonation using GRU-type Neural Network with Audio Signals

  • Hyeonbin Han;Keun Young Lee;Seong-Yoon Shin;Yoseup Kim;Gwanghyun Jo;Jihoon Park;Young-Min Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2024
  • Closed quotient (CQ) represents the time ratio for which the vocal folds remain in contact during voice production. Because analyzing CQ values serves as an important reference point in vocal training for professional singers, these values have been measured mechanically or electrically by either inverse filtering of airflows captured by a circumferentially vented mask or post-processing of electroglottography waveforms. In this study, we introduced a novel algorithm to predict the CQ values only from audio signals. This has eliminated the need for mechanical or electrical measurement techniques. Our algorithm is based on a gated recurrent unit (GRU)-type neural network. To enhance the efficiency, we pre-processed an audio signal using the pitch feature extraction algorithm. Then, GRU-type neural networks were employed to extract the features. This was followed by a dense layer for the final prediction. The Results section reports the mean square error between the predicted and real CQ. It shows the capability of the proposed algorithm to predict CQ values.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

A Pre-Selection of Candidate Units Using Accentual Characteristic In a Unit Selection Based Japanese TTS System (일본어 악센트 특징을 이용한 합성단위 선택 기반 일본어 TTS의 후보 합성단위의 사전선택 방법)

  • Na, Deok-Su;Min, So-Yeon;Lee, Kwang-Hyoung;Lee, Jong-Seok;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.159-165
    • /
    • 2007
  • In this paper, we propose a new pre-selection of candidate units that is suitable for the unit selection based Japanese TTS system. General pre-selection method performed by calculating a context-dependent cost within IP (Intonation Phrase). Different from other languages, however. Japanese has an accent represented as the height of a relative pitch, and several words form a single accentual phrase. Also. the prosody in Japanese changes in accentual phrase units. By reflecting such prosodic change in pre-selection. the qualify of synthesized speech can be improved. Furthermore, by calculating a context-dependent cost within accentual phrase, synthesis speed can be improved than calculating within intonation phrase. The proposed method defines AP. analyzes AP in context and performs pre-selection using accentual phrase matching which calculates CCL (connected context length) of the Phoneme's candidates that should be synthesized in each accentual phrase. The baseline system used in the proposed method is VoiceText, which is a synthesizer of Voiceware. Evaluations were made on perceptual error (intonation error, concatenation mismatch error) and synthesis time. Experimental result showed that the proposed method improved the qualify of synthesized speech. as well as shortened the synthesis time.

Verify Image-Guided Shifts for 6DoF Couch using Yonsei Cancer Center QA Set (Yonsei Cancer Center QA Set을 이용한 6DoF Couch의 이동 정확성 검증)

  • Jung, Dongmin;Park, Hyokuk;Yoon, Jongwon;Lee, Sangkyu;Kim, Jooho;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.7-18
    • /
    • 2017
  • Purpose: A QA Set was established to verify the movement accuracy of image-guided 6DoF Couch and to evaluate its usefulness. Materials and Methods: Two sets of linear accelerators equipped with 6DoF Couch and CBCT were used. Using the established QA Set, each CBCT image was obtained over 15 times through the Penta-Guide Phantom installed with off-set shift values along six translational (Translation; TX, TY, TZ) and rotational (Rotation, Pitch; RX, Roll; RY, Yaw; RZ) directions. Using this method, we compared the reference image and the registration image, and we analyzed the error calculated by measuring the positional accuracy of the modified 6DoF Couch. Results: The Air Cavity corresponding to the Pixel of the reference image and the registration image were all contained between 30 and 66, and the revealing high registration accuracy. Error between the modified off-set value of 6DoF Couch and the measured value along translational directions were $0.25{\pm}0.18mm$ in the TX direction, $0.25{\pm}0.25mm$ in the TY direction, and $0.36{\pm}0.2mm$ in the TZ direction. Misalignments along the rotational axis were $0.18{\pm}0.08^{\circ}$ in the RX direction, $0.26{\pm}0.09^{\circ}$ in the RY direction, and $0.11{\pm}0.08^{\circ}$ in the RZ direction, it was corrected precisely for any value. Conclusion: Using the YCC QA Set, we were able to verify the error of 6DoF Couch along both the translational and rotational directions in a very simple method. This system would be useful in performing Daily IGRT QA of 6DoF Couch.

  • PDF

Verticality 3D Monitoring System for the Large Circular Steel Pipe (대형 원형강관 수직도 모니터링을 위한 3D 모니터링 시스템)

  • Koo, Sungmin;Park, Haeyoung;Oh, Myounghak;Baek, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.870-877
    • /
    • 2020
  • A suction bucket foundation, especially useful at depths of more than 20m, is a method of construction. The method first places an empty upturned bucket at the target site. Then, the bucket is installed by sucking water or air into it to create negative pressure. For stability, it is crucial to secure the verticality of the bucket. However, inclination by the bucket may occur due to sea-bottom conditions. In general, a repeated intrusion-pulling method is used for securing verticality. However, it takes a long time to complete the job. In this paper, we propose a real-time suction bucket verticality monitoring system. Specifically, the system consists of a sensor unit that collects raw verticality data, a controller that processes the data and wirelessly transmits the information, and a display unit that shows verticality information of a circular steel pipe. The system is implemented using an inclination sensor and an embedded controller. Experimental results show that the proposed system can efficiently measure roll/pitch information with a 0.028% margin of error. Furthermore, we show that the system properly operates in a suction bucket-based model experiment.

MANUFACTURING AND TEST RESULTS OF OFF-AXIS PARABOLIC CYLINDER MIRROR FOR FIMS (FIMS에 사용되는 비축 포물 원통형 반사경의 제작과 성능 시험 결과)

  • Ryu, K.-S.;Yuk, I. S.;Seon, K.-I.;Lee, Y.-W.;Nam, U.-W.;Shin, J.-H.;Hong, S.-J.;Lee, D.-H.;Jin, H.;Oh, S.-H;Rhee, J.-G.;Min, K.-W.;Han, W.;Park, J.-H.;Edelstein, J.;Korpela, E. J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.239-248
    • /
    • 2001
  • Far-ultraviolet IMaging Spectrograph (FIMS) is the main payload of the first Korean scientific satellite, KAISTSAT-4, which will be launched in 2002. Among the optical parts, parabolic cylinder mirror does not have any heritage from previous astronomical missions, so the manufacturing and testing process itself is a challenging issue. We describe the method of manufacturing and measuring of the off-axis parabolic cylinder mirror and our initial experiments to establish the entire manufacturing process. Using the method, the profile error can meet the specification of $lambda$ per cm which is closely related with the astronomical performances. In case of the surface roughness, temperature controlled pitch polishing reduces $R_{q}$ under 1 nm implying that scattering in the entire spectral range of FIMS is less than 2% of the incident UV light.

  • PDF

A Study on Voice Activity Detection Using Auditory Scene and Periodic to Aperiodic Component Ratio in CASA System (CASA 시스템의 청각장면과 PAR를 이용한 음성 영역 검출에 관한 연구)

  • Kim, Jung-Ho;Ko, Hyung-Hwa;Kang, Chul-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.181-187
    • /
    • 2013
  • When there are background noises or some people speaking at the same time, a human's auditory sense has the ability to listen the target speech signal with a specific purpose through Auditory Scene Analysis. The CASA system with human's auditory faculty system is able to segregate the speech. However, the performance of CASA system is reduced when the CASA system fails to determine the correct position of the speech. In order to correct the error in locating the speech on the CASA system, voice activity detection algorithm is proposed in this paper, which is a combined auditory scene analysis with PAR(Periodic to Aperiodic component Ratio). The experiments have been conducted to evaluate the performance of voice activity detection in environments of white noise and car noise with the change of SNR 15~0dB. In this paper, by comparing the existing algorithms (Pitch and Guoning Hu) with the proposed algorithm, the accuracy of the voice activity detection performance has been improved as the following: improvement of maximum 4% at SNR 15dB and maximum 34% at SNR 0dB for white noise and car noise, respectively.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF

The Speaker Recognition System using the Pitch Alteration (피치변경을 이용한 화자인식 시스템)

  • Jung JongSoon;Bae MyungJin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.115-118
    • /
    • 2002
  • Parameters used in a speaker recognition system are desirable expressing speaker's characteristics filly and have in a speech. That is to say, if inter-speaker than intra-speaker variance a big characteristic, it is useful to distinguish between speakers. Also, to make minimum error between speakers, it is required the improved recognition technology as well as the distinguishing characteristics. When we see the result of recent simulation performance, we obtain more exact performance by using dynamic characteristics and constant characteristics by a speaking habit. Therefore we suggest it to solve this problem as followings. The prosodic information is used by a characteristic vector of speech. Characteristics vector generally using in speaker recognition system is a modeling spectrum information and is working for a high performance in non-noise circumstance. However, it is found a problem that characteristic vector is distorted in noise circumstance and it makes a reduction of recognition rate. In this paper, we change pitch line divided by segment which can estimate a dynamic characteristic and it is used as a recognition characteristic. we confirmed that the dynamic characteristic is very robust in noise circumstance with a simulation. We make a decision of acceptance or rejection by comparing test pattern and recognition rate using the proposed algorithm has more improvement than using spectrum and prosodic information. Especially stational recognition rate can be obtained in noise circumstance through the simulation.

  • PDF