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Abstract

Closed quotient (CQ) represents the time ratio for which the vocal folds remain in contact during voice production. Because

analyzing CQ values serves as an important reference point in vocal training for professional singers, these values have been

measured mechanically or electrically by either inverse filtering of airflows captured by a circumferentially vented mask or post-

processing of electroglottography waveforms. In this study, we introduced a novel algorithm to predict the CQ values only from

audio signals. This has eliminated the need for mechanical or electrical measurement techniques. Our algorithm is based on a

gated recurrent unit (GRU)-type neural network. To enhance the efficiency, we pre-processed an audio signal using the pitch

feature extraction algorithm. Then, GRU-type neural networks were employed to extract the features. This was followed by a

dense layer for the final prediction. The Results section reports the mean square error between the predicted and real CQ. It

shows the capability of the proposed algorithm to predict CQ values.

Index Terms: Vocal phonation, GRU, Artificial neural network, Electroglottography

I. INTRODUCTION

Recently, attempts have been undertaken in the phonetics

community to quantitatively analyze the vibratory behavior

of human vocal folds during vocal phonation. A common

method involves employing a windowed Fourier transform

(spectrogram) to examine the audio waveform produced by

the vocal activity. This technique facilitates the direct visual-

ization of voice quality attributes such as harmonicity, kurto-

sis, and spectral centroid [1, 2]. Additionally, a few

researchers have utilized mechanical or electrical devices to

study vocal fold dynamics. Here, the focus was on metrics

such as the subglottal pressure and the contact area of the

vocal folds. For example, circumferentially vented Pneumo-

tach split-flow air masks can measure pressure waveforms

[3]. This enables the analysis of the nasal/oral aerodynamics.

Although an air mask system is a highly effective and direct

tool for voice quality evaluation, it is difficult to use. In con-

trast, electroglottography (EGG) provides a convenient and

noninvasive technique for visualizing vocal fold vibrations

during voice production [4,5]. By placing two electrodes

around the vocal folds and passing a low-amperage current

     

  

https://orcid.org/0009-0007-4713-5892
https://orcid.org/0000-0002-0042-5290
https://orcid.org/0000-0002-8085-1467
https://orcid.org/0009-0007-3504-4109
https://orcid.org/0000-0002-0635-2897
https://orcid.org/0009-0006-7401-4239
https://orcid.org/0009-0006-7401-4239
https://orcid.org/0000-0001-7417-5290


J. lnf. Commun. Converg. Eng. 22(2): 145-152, Jun. 2024 

https://doi.org/10.56977/jicce.2024.22.2.145 146

near the thyroid cartilage, the variations in the vocal fold

contact area can be captured during the glottal cycle. This is

based on the principle that closed vocal folds allow for

higher electrical admittance across the larynx, which results

in a higher current between the electrodes. This method sim-

plifies the evaluation of the vocal quality by visualizing the

variations in the contact area of the vocal folds during vocal

production.

One of the crucial metrics extracted from the EGG signal

is the closed quotient (CQ). It represents the time ratio

during which the vocal folds remain in contact throughout

voice production [6,7]. Various theories have emphasized the

significance of CQ in voice analysis. Typically, a higher CQ

is associated with voices considered stronger or more

pressed and is, attributed to the increased duration of vocal

fold contact during phonation; it yields richer and more

vibrant sounds. Consequently, a higher CQ was more preva-

lent in vocal production when the chest register was used

than when the head register was used. Additionally, CQ is

effective in clinical diagnostics. This is because alterations

Fig. 1. Overall process of methods. The first step of the training stage is the measurement of a vocal phonation process in terms of the audio signal and EGG

signal. An audio waveform is pre-processed by the pitch algorithm before being input to GRU neural network while the CQ value is extracted from the EGG
waveform. By supervised learning of the GRU neural network, we obtain the prediction model for CQ value. After the model is trained via an auto-grad algorithm,
the CQ value can be predicted from only the audio waveform in the prediction stage.
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in vocal fold closure patterns owing to lesions or paralysis

affect typical CQ values [8]. It is generally acknowledged

that CQ decreases as the fundamental frequency increases.

To summarize, the insights gained from analyzing CQ levels

serve as important reference points in vocal training for pro-

fessional singers.

Notwithstanding the critical role of the closed quotient

(CQ) values in vocal analysis, obtaining these values con-

ventionally requires mechanical and electrical measurements.

These methods involve either the inverse filtering of airflows

captured by a circumferentially vented mask or the post-pro-

cessing of EGG waveforms. In this study, we introduced a

novel algorithm to predict the CQ values from only audio

signals. This eliminates the need for mechanical and electri-

cal measurement techniques. Our approach began by con-

structing a dataset that pairs the vocal audio waveforms with

their corresponding CQ values. We then developed a machine-

learning algorithm that leverages supervised learning for

training. Recently, significant developments have been achieved

in the ANN community. For example, see [9,10] for com-

puter vision, [11,12] for reinforcement learning, and [13,14]

for natural language processing. In particular, recurrent neu-

ral networks (e.g., LSTM [15-17] and GRU [18-20]) have

been demonstrated to be effective in handling time-series

data. Therefore, we employed neural network architectures

that incorporate gated recurrent unit (GRU) layers in the CQ

prediction algorithm. To optimize the performance of the

algorithm, we preprocessed the audio input using a pitch fea-

ture extraction algorithm [21,22] before substituting it into a

GRU-type neural network. In the Results section, we report

the performance of the proposed algorithm. For all the tests,

the MSE between the predicted and real CQ values were

below 8E-03. This indicated the capability of the proposed

algorithm to analyze the vibratory behavior of the vocal fold

contact area.

The remainder of this paper is organized as follows: In

Section 2, we describe the GRU-based neural network algo-

rithm for predicting the CQ values. The results are presented

in Section 3. Finally, the conclusions are presented in Sec-

tion 4.

II. METHODS

In this section, we describe the development of a novel

algorithm for predicting CQ values. Utilizing a neural net-

work based on GRU, the proposed algorithm is trained by

audio and EGG signals. After the training stage is complete,

our model can predict the CQ values only from audio sig-

nals. Subsection A outlines the methodology for data collec-

tion and the process of extracting the CQ value from an

EGG waveform. Subsection B elaborates on the GRU-type

neural networks and pitch feature extraction techniques for

audio signals. The pitch algorithm reduces the length of the

audio signal. GRU-type neural networks are employed to

extract features from the pitch-reduced signal. This is fol-

lowed by a dense layer for prediction. A comprehensive

schematic of this process is shown in Fig. 1.

A. Data collection and CQ feature extraction

In this subsection, we describe the data collection process

and CQ extraction process from EGG signal. Data were col-

lected from the vocal productions of the vowel /‘a’/ by 22

individuals. Each of them spoke for approximately 10 s in a

relaxed state. During this process, the audio signals were

captured using a condenser microphone. Meanwhile, the

EGG signals were recorded with two electrodes attached to

the neck near the vocal folds, utilizing the EG2-PCX2 sys-

tem from Glottal Enterprises. For each individual’s measured

audio and EGG data, we divided the regions by 0.1 s. This

yielded 2,076 samples. (A
i
, EGG

i
) denotes the audio wave-

forms and EGG waveforms for samples i = 1, ..., 2076,

Fig. 2. Typical examples of time-synchronized audio signal and EGG

waveform obtained during vocal production.
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respectively. Fig. 2 shows graphs of typical examples of Ai

and EGGi. Here, we emphasize that EG2-PCX2 systems

have synchronized audio and EGG waveforms during vocal

phonation measurements. Therefore, the waveforms of Ai

and EGGi in Fig. 2 have identical fundamental frequencies

with almost completely matched temporal appearances of the

(local) minimum amplitudes in each period.

Now, we describe the process of extracting the CQ value

from an EGG waveform (see Fig. 3). The CQ value is

defined as follows:

. (1)

Here, the closed vocal fold region is defined by the region

where the EGG waveform is above the tolerance value

(defined as 50% percent of the maximum amplitude of

EGG). Based on the definitions in Eq. (1), the CQ value is

between zero and one. For convenience, we denote CQi

using the CQ value extracted from EGGi. Finally, we define

the dataset in the form of samples (Xi, Yi). The input variable

Xi is an audio signal Ai. The target variable Yi is CQi

obtained by the extraction process for EGG waveforms.

B. GRU-based neural network algorithm

In this subsection, we describe the development of a GRU-

based neural network architecture and its training process.

To obtain a high efficiency, the audio signal Xi was prepro-

cessed using the pitch feature extraction algorithm [17,18].

We briefly describe the pitch algorithm for the completeness

of the work.

In general, extracting the pitch from an audio signal is

identified as determining the peak of the frequency spectrum

from a short-time Fourier transform (STFT). It remains to

estimate accurate peaks in STFT. Paraboloid interpolation is

generally applied using a quadratic polynomial near the

peak. The maximum value of the quadratic polynomial is

presumed to be the peak. Finally, values higher than 10% of

the magnitude of the frequency spectrum were determined as

the pitch. We use the notation

P
i
= Pitch(X

i
) (2)

for the features extracted using the pitch algorithms. Here, P
i

represents vector-type data with a size smaller than that of

X
i
. Therefore, considering P

i
 as a reduced version of an

audio signal, we can efficiently employ a neural network

algorithm.

We now describe GRU-based neural networks [16]. Given

an input time series x, the hidden state h
t
 of the GRU layer is

obtained by sequentially computing Eqs. (3)-(6) for (t = 1, 2,

..., N). Here, N is the length of x.

(3)

(4)

(5)

. (6)

Here rt , zt , and nt are the so-called reset, update, and new

gates. σ is the sigmoid function. An important parameter in

the GRU layer is the hidden size. It indicates the number of

features in the hidden state h. One of the advantages of the

GRU layers is the convenience of stacking layers by consid-

ering the hidden state of the previous layer as an input to the

subsequent layer. We introduced four types of GRU-based

neural network algorithms accompanied by a pitch algorithm

to predict the CQ value:

Definition 1. GRU-based neural networks.

1) GRU 1L utilizes a single-layer GRU followed by a

dense layer for regression.
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Fig. 3. Two EGG waveforms with CQ = 0.61 (top) and 0.55 (bottom). The
red line indicates the closed vocal fold sub-region where the EGG signal is

above the tolerance level. The ratio of a period to the vocal-fold-closed period
determines the CQ value.
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2) GRU 2L employs two stacked GRU layers followed by a

dense layer for regression.

3) BiGRU 1L uses a single-layer bidirectional GRU fol-

lowed by a dense layer for regression.

4) CONV1D-GRU applies one-dimensional convolutional

layer, followed by a single-layer GRU and a dense layer for

the regression. □

The four types of GRU-based neural networks in Defini-

tion 1 have one or two GRU layers, possibly with an accom-

panying one-dimensional convolutional layer. Here, all the

neural networks listed in Definition 1 have a dense layer at

the final stage of the CQ regression. Typically, GRU-type

neural networks are trained using a backpropagation algo-

rithm.

We are in a position to state the CQ prediction algorithm.

Suppose X
i
 is a typical audio signal. First, we apply a pitch

algorithm to reduce the length of the audio signal. Here, P
i
 is

the feature extracted from the pitch algorithm. Next, by

selecting a suitable type of GRU-based neural network, we

obtain regression results by substituting the pitch features

into the GRU-type neural network introduced in Definition

1. We use the notation N(·, θ) for the neural network archi-

tecture. θ denotes the collection of parameters appearing in

the GRU-type neural network. Here, we summarize the CQ

prediction algorithm. We call it Pitch-GRU.

Algorithm Pitch-GRU (Input: X
i
, output: ).

1. Extract pitch features from the input audio sample:

P
i
= Pitch(X

i
).

2. Select one of the following GRU configurations to

define neural network N(P
i
, θ):

1) GRU 1L

2) GRU 2L

3) BiGRU 1L

4) CONV1D-GRU 1L

3. Predict CQ by 

= N(Pi, θ). □

Note that we can alternatively substitute raw audio-signal

Xi directly to N(·, θ):

Algorithm 2 (Input: Xi, output: ).

1. Select one of the following GRU configurations to

define neural network N(Pi, θ):

1) GRU 1L

2) GRU 2L

3) BiGRU 1L

4) CONV1D-GRU 1L

2. Predict CQ by

= N(Xi, θ). □

Pitch-GRU is the primary proposed method. Algorithm 2

is used for a comparison to emphasize the enhanced perfor-

mance of the pitch algorithm.

III. RESULTS

In this section, we report the performance of the Pitch-

GRU algorithm. Note that Algorithm 2 (which does not use

pitch extraction) was used for the comparison.

Data were collected from the vocal productions of the

vowel /‘a’/ by 22 individuals. This yielded 2,076 audio and

EGG pairs of samples. These samples were divided into

training, valid, and test sets consisting of 1,230, 412, and

434 samples, respectively. 

For all the tests, the hidden sizes in the GRU layers were

set to 10. The losses were defined as the mean squared error

(MSE) between Y
i
 and . The GRU-based neural networks

were trained using Adam optimization [23] with a learning

rate of 0.1. All the tests were conducted using an NDIVIA

RTX A5000 instrument.

We report the performance of Pitch-GRU in terms of the

number of parameters, losses, and CPU time. It is notewor-

thy that for all the cases, the test errors were below 8.0E-3.

This indicated a close match between the predicted and

actual CQ values. The test loss was the smallest when GRU

2L was employed. However, the CPU time was shortest

when CONV1D-GRU was used for the neural network.

Now, we compare Pitch-GRU and Algorithm 2. Because

we did not use pitch feature extraction in Algorithm 2, the

CPU time was longer for this algorithm. This occurred

because in Pitch-GRU, pitch extraction reduces the length of

the audio signal, which yields a small sequence for the input

for neural networks. In terms of accuracy, Pitch-GRU has

fewer errors than Algorithm 2. This shows that the pitch

algorithm is capable of capturing the important features of

audio signals. Therefore, we conclude that the proposed

pitch-GRU algorithm is computationally efficient while obtain-

Ỹi

Ỹi

Ỹi

Ỹi

Ỹi

Table 1. Number of parameters and training/validation/test losses, and
CPU time of Pitch-GRU with different neural networks

Model Parameter
Training

Loss

Validation

loss

Test

Loss

CPU

time

GRU 1L 401 7.6E-3 7.1E-3 8.0E-3 99.3 s

GRU 2L 1061 7.7E-3 6.8E-3 7.6E-3 107.4 s

BiGRU 1L 801 7.7E-3 5.1E-3 8.0E-3 104.8 s

CONV1D-GRU 8627 7.5E-3 7.3E-3 7.6E-3 146.6 s

Table 2. Number of parameters and training/validation/test losses, and
CPU time of Algorithm 2 with different neural networks (GRU 1L, GRU 2L,
BiGRU 1L, Conv1D GRU)

Model Parameter
Training

loss

Validation

Loss

Test

Loss

CPU

time

GRU 1L 401 7.9E-3 5.5E-3 8.8E-3 526.9 s

GRU 2L 1061 7.8E-3 6.6E-3 9.0 E-3 649.4 s

BiGRU 1L 801 7.8E-3 6.9E-3 9.0 E-3 610.7 s

CONV1D-GRU 8627 7.2E-3 9.9E-3 9.6 E-3 240.2 s
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ing a high CQ prediction accuracy.

It is reasonable to consider whether other types of feature

extraction algorithms enhance GRU-type neural networks for

predicting CQ values. Therefore, we changed the first step of

Pitch-GRU by replacing the pitch algorithm with MFCC

[24], Chroma [25], ZCR [26], and RMS_E [27]. The test

losses of the resulting algorithm are listed in Table 3. We

observed that the pitch algorithm is most accurately

employed with GRU-type neural networks. This validates

our selection of the pitch algorithm for audio-feature

extraction.

Finally, we compared the performance of Pitch-GRU

employed with GRU 2L with that of other tree ensemble-

type algorithms. In Table 4, we report the losses and CPU-

time for Pitch-GRU, random forest [28,29], and XGBoost

[30]. It is observed that the test loss of the Pitch-GRU algo-

rithm was lower than those of random forest and XGBoost.

IV. CONCLUSION

In this study, we developed a new method called Pitch-

GRU to predict CQ using audio signals during vocal phona-

tion. Data were collected from vocal productions of the

vowel /‘a’/ by 22 individuals. The CQ values were extracted

from EGG waveforms. By matching the audio signals and

CQ values, we trained the GRU-based neural networks using

supervised learning. To enhance the efficiency, the audio sig-

nal was preprocessed using the pitch feature extraction algo-

rithm. The results revealed that, the MSE errors between the

predicted CQ and real CQ was below 9E-03 for all the cases.

This demonstrates the capability of the proposed algorithm

in analyzing the vocal fold behavior during vocal phonation.

Next, we discussed the likely utilization of the proposed

Pitch-GRU algorithm. Because our algorithm can predict the

CQ in real time, it can be used efficiently as a reference tool

for educating professional singers or as vocal cord exercises

for patients with vocal fold disorders. In future works, we

can consider different vowel such as /‘i’/ or /‘u’/.
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