• 제목/요약/키워드: Piping geometry factor

검색결과 9건 처리시간 0.019초

플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II) (A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

원주방향 관통균열이 존재하는 원통형 구조물의 인장하중에 의한 응력확대계수 비교 (Comparison of Stress Intensity Factors for Cylindrical Structure with Circumferential Through-Wall Cracks subjected to Tensile Load)

  • 정달우;오창균;김현수;권형도;양준석
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.101-108
    • /
    • 2021
  • To date, a number of stress intensity factor (SIF) solutions have been proposed for the cylindrical structure with circumferential through-wall cracks. However, each solution has a different format as well as applicable range. It is also known that there is a significant difference in predicted SIF values depending on the shape of the structure and the size of the crack. In this study, the applicability of various SIF solutions was analyzed by comparing the finite element analysis results for the case where a tensile load is applied to the cylindrical structure with circumferential through-wall crack. It is found that the calculated SIF gradually decreases and converges to a certain value with increasing length-to-radius ratio. Therefore, an appropriate length-to-radius ratio should be set in consideration of the dimensions of the actual cylindrical structure. For piping with sufficiently long cylinder, the ASME solution is found to be the most appropriate, and for a short cylinder, the API solution should be applied. On the other hand, the WEC solution requires careful attention to its application.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

CFD모사 기법을 이용한 관내 혼화장치내 수두손실 발생 특성 평가 (Evaluation of Head Loss within In-Line Mixer for Water Treatment using CFD Technique)

  • 황영진;임성은;김성수;박노석;왕창근
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.107-112
    • /
    • 2009
  • This study was conducted for verification and systematization of estimation method about the headloss using CFD(Computational Fluid Dynamics). Head loss which happens between the inlet and outlet of in-line mixer can be a major factor for the design and construction. Also, this Case studies about the sensitivity related to the velocity in the piping system. As result, program's default calculation function was used to get each side's total pressure and the differential of each total pressure could be defined as head loss from in-line mixer. In the case of adopting pipe surface friction factor and geometry loss, Calculation residual can be much more reduced. It was found that residual of value between CFD method and field test ranged about 3 through 18 precent.

용접구조물의 피로설계를 위한 유한요소 해석 및 통합 피로선도 초안 개발 (Finite Element Analysis and Development of Interim Consolidated 5-N Curve for Fatigue Design of Welded Structure)

  • 김종성;진태은;홍정균
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.724-733
    • /
    • 2003
  • Fatigue design rules for welds in the ASME Boiler and Pressure Vessels Code are based on the use of Fatigue Strength Reduction Factors(FSRF) against a code specified fatigue design curve generated from smooth base metal specimens without the presence of welds. Similarly, stress intensification factors that are used in the ASME B3l.1 Piping Code are based on component S-N curves with a reference fatigue strength based on straight pipe girth welds. But the determination of either the FSRF or stress intensification factor requires extensive fatigue testing to take into account the stress concentration effects associated with various types of component geometry, weld configuration and loading conditions. As the fatigue behavior of welded joints is being better understood, it has been generally accepted that the difference in fatigue lives from one type of weld to another is dominated by the difference in stress concentration. However, general finite element procedures are currently not available for effective determination of such stress concentration effects. In this paper, a mesh-insensitive structural stress method is used to re-evaluate the S-N test data, and then more effective method is proposed for pressure vessel and piping fatigue design.

이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가 (Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading)

  • 김종민;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

밸브 후단 피팅에 따른 밸브 용량계수의 영향 평가 (Evaluation of the Effect on the Valve Flow Coefficient by Attached Fitting)

  • 강승규;이원식;윤준용;민경화
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.29-37
    • /
    • 2003
  • This study was undertaken to verify the effect of flow coefficient when a globe control valve was attached by different type of fitting. The valve flow coefficient is usually determined by measuring the flow rate and the pressure drop with the connection of straight pipe through the valve. The effect of different fitting that is mounted on the downstream of the valve is studied. Four types of fittings and three distances between the valve and a downstream fitting are compared parametrically to investigate the effect on the flow coefficient of it. Measured flow coefficient and numerically predicted value by using computational fluid dynamics were compared in detail. It is concluded that the flow coefficient is reduced if the fitting is attached after a valve, but the effect of different type of fitting is not crucial.

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.

플랜트 및 선박의 액체용 유량제어밸브 설계에 관한 연구(I) (A Study on the Design of Liquid Flow Control Valves for the Plants and Ships)

  • 최순호;박천태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권1호
    • /
    • pp.28-35
    • /
    • 1995
  • The fluid flow for a energy transfer is essential for the design and operation of power plants, petrochemical plants and ships including a process. When the operating conditions of a plant are changed or any transitional event occured, the flow controls of a fluid must be performed to follow the new operating state or mitigate the results of a event. Generally these flow controls to accommodate the new operating state of a plant are made by the use of various valves. The refore the design of valves and the related techniques are very important to the system and component designs. However the system and component design are not familiar with the practical theory of the valve since the derivative procedures of the flow equations in a valve are difficult and it is not easy to found the theoretical foundamentals and informations about the design of a valve from the present references. In this study the flow equations applicable to a valve for liquid are theoretically derived in detail. And the definition of valve reynolds number and its boundary values between the tubulent and laminar flow is described compared with the values of a circular pipe flow.

  • PDF