• 제목/요약/키워드: Pipelines

검색결과 828건 처리시간 0.03초

부식을 고려한 해저 파이프라인의 확률론적 중량물 낙하 충돌 위험도 해석 (Probabilistic Risk Analysis of Dropped Objects for Corroded Subsea Pipelines)

  • 안쿠시 쿠마;서정관
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.93-102
    • /
    • 2018
  • Quantitative Risk Assessment (QRA) has been used in shipping and offshore industries for many years, supporting the decision-making process to guarantee safe running at different stages of design, fabrication and throughout service life. The assessments of a risk perspective are informed by the frequency of events (probability) and the associated consequences. As the number of offshore platforms increases, so does the length of subsea pipelines, thus there is a need to extend this approach and enable the subsea industry to place more emphasis on uncertainties. On-board operations can lead to objects being dropped on subsea pipelines, which can cause leaks and other pipeline damage. This study explains how to conduct hit frequency analyses of subsea pipelines, using historical data, and how to obtain a finite number of scenarios for the consequences analysis. An example study using probabilistic methods is used.

해양파이프라인 비파괴검사를 위한 와전류 센서 개발 (Eddy Current Sensor Development for Offshore Pipeline NDT Inspection)

  • 이슬기;송성진
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

SQI를 이용한 지하 매설 가스 배관 결함 길이 추정 (Defect Length Estimation Using SQI for Underground Gas Pipelines)

  • 김민호;최두현
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.27-32
    • /
    • 2011
  • 본 논문에서는 자기 누설 탐상법을 이용하여 획득한 자기 누설 신호에 SQI(self quotient image)를 적용하여 지하에 매설된 가스 배관에 발생한 결함의 길이를 추정하는 방법을 소개한다. 자기 누설 탐상 시스템(MFL)이 지나간 가스 배관은 탐상 시스템의 영구 자석에 의해 착자(magnetization) 된다. 착자된 가스 배관에 결함이나 부식 등의 손상이 있을 경우 손상 부위에서는 누설 자속이 증가한다. 본 논문에서는 자기 누설 탐상 시스템의 홀센서를 이용하여 누설 자속을 계측한 후 SQI를 적용하여 결함의 길이를 추정한다. 한국가스공사(KOGAS)의 모의 시험 배관(KPSF)에 설치된 74개의 인공결함에 대해 제안한 알고리즘과 기존의 결함 길이 추정 알고리즘들의 성능을 비교하였다.

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

  • Angani, C.S.;Park, D.G.;Kim, C.G.;Kollu, P.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.204-208
    • /
    • 2010
  • Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study, a pulsed eddy current (PEC) differential probe with two excitation coils and two Hall-sensors was fabricated to measure the wall thinning in insulated pipelines. A stainless steel test sample was prepared with a thickness that varied from 1 mm to 5 mm and was laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe were driven by a rectangular current pulse, the difference of signals from two Hall-sensors was measured as the resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The peak value increased as the thickness of the test sample increased. The results were measured at different insulation thicknesses on the sample. Results show that the differential PEC probe has the potential to detect wall thinning in an insulated NPP pipelines.

배전선로 접지저항 및 누설전류 실태조사 (Investigation for Earth Resistance and Leakage Current of D/L)

  • 이현구;하태현;배정효;하윤철;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.379-381
    • /
    • 2003
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. This causes induced voltages on underground metallic pipelines due to the power line currents. This could cause AC corrosion in the pipeline, which could in turn lead to disastrous accidents, such as gas explosion or oil leakage. This paper investigates for the limitation of induced voltage on the buried metal structures which is used in the inside and outside of the country. And then we measure the earth resistance and leakage current of 22.9kV distribution lines and pipe to soil potential of near pipelines in Seoul Korea. Hereby we can see the leakage current flowing through the earthing electrode have an effect on near pipelines.

  • PDF

Reliability Estimation of Buried Gas Pipelines in terms of Various Types of Random Variable Distribution

  • Lee Ouk Sub;Kim Dong Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1280-1289
    • /
    • 2005
  • This paper presents the effects of corrosion environments of failure pressure model for buried pipelines on failure prediction by using a failure probability. The FORM (first order reliability method) is used in order to estimate the failure probability in the buried pipelines with corrosion defects. The effects of varying distribution types of random variables such as normal, lognormal and Weibull distributions on the failure probability of buried pipelines are systematically investigated. It is found that the failure probability for the MB31G model is larger than that for the B31G model. And the failure probability is estimated as the largest for the Weibull distribution and the smallest for the normal distribution. The effect of data scattering in corrosion environments on failure probability is also investigated and it is recognized that the scattering of wall thickness and yield strength of pipeline affects the failure probability significantly. The normalized margin is defined and estimated. Furthermore, the normalized margin is used to predict the failure probability using the fitting lines between failure probability and normalized margin.

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

Beam models for continuous pipelines passing through liquefiable regions

  • Adil Yigit
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.189-195
    • /
    • 2024
  • Buried pipelines can be classified as continuous and segmented pipelines. These infrastructures can be damaged either by ground movement or by seismic wave propagation during an earthquake. Permanent ground deformations (PGD) include surface faulting, liquefaction-induced lateral spreading and landslide. Liquefaction is a major problem for both superstructures and infrastructures. Buyukcekmece lake zone, which is the studied region in this paper, is a liquefaction prone area located near the North Anatolian Fault Line. It is an active fault line in Turkey and a major earthquake with a magnitude of around 7.5 is expected in this investigated region in Istanbul. It is planned to be constructed a new 12" steel natural gas pipeline from one side of the lake to the other side. In this study, this case has been examined in terms of two different support conditions. Firstly, it has been defined as a beam in liquefied soil and has built-in supports at both ends. In the other approach, this case has been modeled as a beam in liquefied soil and has vertical elastic pinned supports at both ends. These models have been examined and some solution proposals have been produced according to the obtained results. In this study, based on this sample, it is aimed to determine the behaviors of buried continuous pipelines subject to liquefaction effects in terms of buoyancy.

각종 매설관의 동적거동에 관한 연구 (A Study on the Dynamic Behavior of a Various Buried Pipeline)

  • 정진호;임창규;정두회;국승규
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.15-24
    • /
    • 2006
  • 본 연구는 각종 매설관의 경계조건에 따른 동적 거동에 대한 연구이다. 축방향 및 축직각방향에 대한 거동을 조사하였다. 매설관은 탄성기초 위에 놓인 보요소로 모형화하였고, 지진파는 정현파 형태의 지반 변위로 적용하였다. 매설관의 고유진동수와 모드 형태 그리고 매개변수의 영향을 조사하기 위해 자유 진동에 대한 해석을 수행했다. 그리고 지반진동에 대한 거동을 조사하기 위해 자유진동 해석을 통해 얻어진 고유진동수와 모드 형태를 이용하여 강제 진동에 대한수식을 유도하였다. 자유 진동시 매설관의 고유진동수에 가장 큰 영향을 미치는 것은 지반 강성과 매설관의 길이였다. 지반진동의 전파방향과 전파속도 그리고 진동수에 대한 콘크리트관, 강관, FRP관의 동적거동을 연구하였고 그 결과를 비교하였으며 다양한 단부경계조건에 대한 동적거동해석을 통해 매설관의 종류와 단부경계조건에 따른 최대 변형률 발생지점을 산정하였다.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.