• Title/Summary/Keyword: Pipeline Structure

Search Result 273, Processing Time 0.026 seconds

Architecture of a PDM VLSI Fuzzy Logic Controller with an Explicit Rule Base

  • Ungering, Ansgar P.;Goser, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1386-1389
    • /
    • 1993
  • We are describing the architecture of a fuzzy logic controller using pulse-width-modulation (PDM) technique and a pipeline structure. Features of this controller are: A new architecture for the inference unit, reduced chip area and less I/O-pins. Additionally we present two different rule-bases: one hardwired with reduced chip-area and the other programmable for prototyping. Also an architecture of a parallel minimum-gate is shown.

  • PDF

A Study of Modified Parallel Feistel Structure of Data Speed-up DES (DES의 데이터 처리속도 향상을 위한 변형된 병렬 Feistel 구조에 관한 연구)

  • Lee, Seon-Keun;kIM, Hyeoung-Kyun;Kim, Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.91-97
    • /
    • 2000
  • With the brilliant development of information communication and the rapid spread of internet, current network communication is carrying several up-to-date functions such as electronic commerce, activation of electro currency or electronic signature and will produce more advanced services in the future. Information communication network such as that electronic commerce would demand the more safe and transparent guard of network, and anticipate the more fast performance of network. In this paper, in order to meet the several demands, DES(data encryption standard) with parallel feistel structure, which feistel structure of the basic structure of DES is transformed into in parallel, is proposed. The existing feistel structure can't use pipeline method for the structural problem of DES itself-the propagation of error. therefore, this modified parallel feistel structure could improve largely the performance of DES which had to have the trade-off relation between data processing speed and data security and in addition a method proposed in SEED having adopted the modified parallel feistel structure shows more excellent secure function and/or fast processing ability. The used CAD Tool use Synopsys Ver. 1999. 10 in both of synthesis and simulation.

  • PDF

An Improvement of Estimation Method of Source Term to the Environment for Interfacing System LOCA for Typical PWR Using MELCOR code

  • Han, Seok-Jung;Kim, Tae-Woon;Ahn, Kwang-Il
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.106-113
    • /
    • 2017
  • Background: Interfacing-system loss-of-coolant-accident (ISLOCA) has been identified as the most hazardous accident scenario in the typical PWR plants. The present study as an effort to improve the knowledge of the source term to the environment during ISLOCA focuses on an improvement of the estimation method. Materials and Methods: The improvement was performed to take into account an effect of broken pipeline and auxiliary building structures relevant to ISLOCA. An estimation of the source term to the environment was for the OPR-1000 plants by MELOCR code version 1.8.6. Results and Discussion: The key features of the source term showed that the massive amount of fission products departed from the beginning of core degradation to the vessel breach. Conclusion: The release amount of fission products may be affected by the broken pipeline and the auxiliary building structure associated with release pathway.

Controlling-strategy design and working-principle demonstration of novel anti-winding marine propulsion

  • Luo, Yaojing;Ai, Jiaoyan;Wang, Xueru;Huang, Peng;Liu, Gaoxuan;Gong, Wenyang;Zheng, Jianwu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.48-59
    • /
    • 2020
  • A traditional propeller can easily become entangled with floating objects while operating. In this paper, we present a newly developed Electromagnetic-valve-control-based Water-jet Propulsion System (ECWPS) for an unmanned surface cleaning vessel that can be flexibly controlled via a Micro Control Unit (MCU). The double-structure was adapted to the unmanned surface cleaning vessel for floating-collection missions. Computational Fluid Dynamics (CFD) software for operating effect simulation was also used to reveal the working principle of the ECWPS under different conditions. Neglecting the assembly technique, the design level, controlling strategy, and maneuvering performance of the ECWPS reached unprecedented levels. The ECWPS mainly consists of an Electromagnetic-valve Array (EA), pipeline network, control system, and water-jet source. Both CFD analyses and experimental results show that the hydraulic characteristic of the ECWPS was predicted reasonably, which has enormous practical value and development prospects.

Penalized logistic regression using functional connectivity as covariates with an application to mild cognitive impairment

  • Jung, Jae-Hwan;Ji, Seong-Jin;Zhu, Hongtu;Ibrahim, Joseph G.;Fan, Yong;Lee, Eunjee
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.603-624
    • /
    • 2020
  • There is an emerging interest in brain functional connectivity (FC) based on functional Magnetic Resonance Imaging in Alzheimer's disease (AD) studies. The complex and high-dimensional structure of FC makes it challenging to explore the association between altered connectivity and AD susceptibility. We develop a pipeline to refine FC as proper covariates in a penalized logistic regression model and classify normal and AD susceptible groups. Three different quantification methods are proposed for FC refinement. One of the methods is dimension reduction based on common component analysis (CCA), which is employed to address the limitations of the other methods. We applied the proposed pipeline to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data and deduced pathogenic FC biomarkers associated with AD susceptibility. The refined FC biomarkers were related to brain regions for cognition, stimuli processing, and sensorimotor skills. We also demonstrated that a model using CCA performed better than others in terms of classification performance and goodness-of-fit.

The Integrative Research Paradigm of IRRI and the OneCGIAR

  • Ajay Kohli
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.5-5
    • /
    • 2022
  • A little more than a decade ago, the International Rice Research Institute (IRRI) started on a journey of revitalization through adopting the concept of systems research. Instead of being just a rice breeding and affiliated sciences research center, it expanded its vision of impact on the rice-based food systems. In almost the same vein the OneCGIAR has also attempted to aggregate the commodity-based research into food systems-based research that critically caters to specific overarching 'Impact and Action Areas'. Incidentally, IRRI's structure and operations map on to these Impact and Action areas very well. Hence, IRRI's research directly caters to societal, economic and environmental sustainability. It does so through a coherent pipeline that spans the upstream discovery component all the way to product delivery, dissemination, and impact assessment. While a circular 5D-pipeline of demand, discovery, development, deployment and distinction attend to the ground-level realities of demand, development and acceptance of a product, the Four Flagships attend to proximal deliverables under challenging conditions of change brought about by the CGIAR restructuring and COVID-19. Prioritizing specific products under the flagships ensures that institutional support is available to fast-track the deliverables. Clear examples now highlight the potential of such approaches. Thus, despite the challenges of climate change, political unrest of war and global medical encumbrances, the stable partners of IRRI like Korea have helped to come close to deliverables.

  • PDF

Generating 3D Digital Twins of Real Indoor Spaces based on Real-World Point Cloud Data

  • Wonseop Shin;Jaeseok Yoo;Bumsoo Kim;Yonghoon Jung;Muhammad Sajjad;Youngsup Park;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2381-2398
    • /
    • 2024
  • The construction of virtual indoor spaces is crucial for the development of metaverses, virtual production, and other 3D content domains. Traditional methods for creating these spaces are often cost-prohibitive and labor-intensive. To address these challenges, we present a pipeline for generating digital twins of real indoor environments from RGB-D camera-scanned data. Our pipeline synergizes space structure estimation, 3D object detection, and the inpainting of missing areas, utilizing deep learning technologies to automate the creation process. Specifically, we apply deep learning models for object recognition and area inpainting, significantly enhancing the accuracy and efficiency of virtual space construction. Our approach minimizes manual labor and reduces costs, paving the way for the creation of metaverse spaces that closely mimic real-world environments. Experimental results demonstrate the effectiveness of our deep learning applications in overcoming traditional obstacles in digital twin creation, offering high-fidelity digital replicas of indoor spaces. This advancement opens for immersive and realistic virtual content creation, showcasing the potential of deep learning in the field of virtual space construction.

Sigma Delta Decimation Filter Design for High Resolution Audio Based on Low Power Techniques (저전력 기법을 사용한 고해상도 오디오용 Sigma Delta Decimation Filter 설계)

  • Au, Huynh Hai;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.141-148
    • /
    • 2012
  • A design of a 32-bit fourth-stage decimation filter decimation filter used in sigma-delta analog-to-digital (A/D) converter is proposed in this work. A four-stage decimation filter with down-sampling factor of 512 and 32-bit output is developed. A multi-stage cascaded integrator-comb (CIC) filter, which reduces the sampling rate by 64, is used in the first stage. Three half-band FIR filters are used after the CIC filter, each of which reduces the sampling rate by two. The pipeline structure is applied in the CIC filter to reduce the power consumption of the CIC. The Canonic Signed Digit (CSD) arithmetic is used to optimize the multiplier structure of the FIR filter. This filter is implemented based on a semi-custom design flow and a 130nm CMOS standard cell library. This decimation filter operates at 98.304 MHz and provides 32-bit output data at an audio frequency of 192 kHz with power consumption of $697{\mu}W$. In comparison to the previous work, this design shows a higher performance in resolution, operation frequency and decimation factor with lower power consumption and small logic utilization.

Design of Decimal Floating-Point Adder for High Speed Operation with Leading Zero Anticipator (선행 제로 예측기를 이용한 고속 연산 십진 부동소수점 가산기 설계)

  • Yun, Hyoung-Kie;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.407-413
    • /
    • 2015
  • In this paper, a DFPA(decimal floating-point adder) designed a pipeline structure that uses a LZA(leading zero anticipator) to reduce critical route to shorten delay to improve the speed of operation processing. The evaluation and verification of performance of proposed DFPA applied the Flowrian tool with simulation and Cyclone III FPGA was set as the target on the Quartus II tool for the synthesis. The proposed method compared and verified to proposed the other method using same input data. As a result, the performance of proposed method is improved 11.2% and 5.9% more than L.K.Wang's method and etc.. Also, it is confirmed that improvement of operation processing speed and reduction of the number of delay elements on critical path.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.