• 제목/요약/키워드: Pipe steel

검색결과 1,031건 처리시간 0.022초

수도관의 부기거동에 관한 연구 (Corrosion Behaviour of Water Pipes)

  • 김원만;박영식
    • 환경위생공학
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 1992
  • Corrosion of pipes Is one of the most serious problems in the maintenance of water worlds. Corrosion is promoted not only by physical factors such as temperature, but also by electrochemical factors including concentration of soluble metal ions, chlorine ion, pH, DO and microorganisms. Corrosion products also affect corrosion rate. In this research, study results are summarized as follows ; 1) Corrosion test was performed for 4 weeks at $70^{\circ}C$, pH 7.0 with specimens of 4 types of metal materials used as service pipes. Corrosion rate and S.E.M were analyzed. The results were showed that corrosion 1.ate of carbon steel pipe was 4.10~5.22 $mg/\textrm{cm}^2$ . week, galvanized steel pipe 0.98~1.34$mg/\textrm{cm}^2$. week, Copper pipe 0.02~0.04$mg/\textrm{cm}^2$. week, stainless steel pipe 0.05~ 0.10$mg/\textrm{cm}^2$ . week. 2) When corrosion rate was tested for tile types of pipes at pH 7 and both $25^{\circ}C$ and $75^{\circ}C$, avaerage corrosion rate for 6 weeks at $25^{\circ}C$ Ivas 2.26$mg/\textrm{cm}^2$ . week in carbon steel pipe, 1.99$mg/\textrm{cm}^2$. week in galvanized steel pipe, 0.26 $mg/\textrm{cm}^2$. week in stainless steel pipe. At $87^{\circ}C$, average corrosion rate for 4 weeks u.3s 4.56 $mg/\textrm{cm}^2$. week in carbon steel pipe,

  • PDF

상·하수도 배관재의 토양환경에서의 부식표준시스템 개발 (The Development of Corrosion Standard System of Water and Wastewater in Soil Environment)

  • 박경동;신영진;이주영
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

재학속도에 따른 용접강관의 모멘트 응답특성에 관한 해석적 연구 (An Analytical Study on Moment Response of Welded Steel Pipe for Loading Rate)

  • 장경호;장갑철
    • 한국공간구조학회논문집
    • /
    • 제11권4호
    • /
    • pp.37-47
    • /
    • 2011
  • 재하속도에 따른 용접강관의 모멘트-곡률 거동특성에 관한 해석적 연구를 수행하였다. 3차원 열역학해석을 통하여 용접이음부의 잔류응력을 산출하였다. 그리고 동적소성모델이 적용된 탄소성 유한요소해석 프로그램을 이용하여 잔류응력을 고려한 용접강관(Welded pipe)의 동적해석을 수행하였다. 그리고 용접이음부가 없는 일반강관(Seamless pipe)에 대한 동적거동과의 비교를 통하여 해석을 수행하여 용접강관의 해석력과 해석결과는 용접강관의 모멘트가 일반강관의 모멘트에 비해 낮은 응답을 보였으나 재하속도가 증가함에 따라 모멘트 응답의 차이는 점차 감소하는 경향을 보였다.

팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성 (Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness)

  • 김경철;김호종;정영훈;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제19권2호
    • /
    • pp.249-263
    • /
    • 2017
  • 팽창형 강관 록볼트의 설치 전 단면 형상은 ${\Omega}$형이어서, 팽창 중 거동은 기하학적 비선형 특성을 보인다. 기존 팽창형 강관 록볼트의 정착 거동에 관한 연구는 주로 이론적 방법이었다. 하지만 이론적 방법은 팽창형 강관 록볼트의 등방 팽창을 가정하므로, 실제 거동을 지나치게 단순화하였다. 본 연구에서는 강관 팽창 거동의 비선형성과 다양한 영향 특성을 고려한 수치해석을 이용하여, 팽창형 강관 록볼트의 정착 거동을 모사하였다. 본 해석을 통해 강관의 팽창 과정, 접촉응력 분포, 평균 접촉 응력 및 접촉 면적의 변화를 분석하였다. 암반의 탄소성 조건에 따라 강관의 접촉응력이 다르게 나타났는데, 탄성 조건의 암반에 설치된 강관에 비해 탄소성 조건의 암반에 설치된 강관에서 작은 접촉응력이 발생했다. 또한 암반의 강성에 따라 팽창형 강관 록볼트의 정착 거동이 달라졌다. 주어진 해석 조건에서 암반 강성이 0.5 GPa 이하 일 때 강관은 완전히 펴지지만, 암반 강성이 0.5 GPa보다 클 때 완전히 펴지지 않았다. 강관이 완전히 펴진 경우 암반 강성이 증가함에 따라 접촉응력의 크기가 증가했지만, 강관이 완전히 펴지지 않은 경우 암반 강성이 증가함에 따라 접촉응력의 크기가 감소했다.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

박판강대의 롤성형 및 부하 분석 (Thin Steel Sheet Roll Forming and Load Analysis)

  • 서정현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.273-279
    • /
    • 1999
  • In this paper the stress and strain behaivor in near homogeneous isotropic matrix of metal like steel was studied roll forming of thin steel sheet for cylindrical pipe. Analytical results reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also loads applied during roll forming were analyzed using two typical thin steel sheet 12.3m thick steel sheet with 42.5kg /mm2 yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/mm2 yield strength of pipe. Through this analysis applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

박판 강대의 롤성형 및 부하 분석 (Thin Steel Sheet Roll Forming and Load Analysis)

  • 서정현
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.554-562
    • /
    • 1999
  • In this paper, the stress and strain behavior in near homogeneous isotropic matrix of metal like steel was studied during roll forming of thin steel sheet for cylindrical pipe. Analytical result reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result, construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also, loads applied during roll forming were analyzed using two typical thin steel sheets. 12.3mm thick steel sheet with 42.5kg/㎟ yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/㎟ yield strength of pipe. Through this analysis, applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

강관말뚝 기초 두부 연결부의 압축거동에 관한 연구 (The Study on Compressive Behavior of Connection Member between Steel Pipe Pile and Concrete Footing)

  • 윤일로;홍기남
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.183-190
    • /
    • 2006
  • Generally, application of steel pile as deep foundation member needs specials requirement for the connection method between steel pipe and concrete footing. To investigate real compressive behavior of connection member between steel pipe pile and concrete footing, three specimens were tested with carefully designed experimental system. Main test variable is the connection method between steel pipe pile and concrete footing. The bolted bonding method and hook bonding method was considered as the connection method in this study. From the test results gained from experiment, it was conformed that two types of connection method have the almost same compressive resistance capacity. Therefore, we can conclude that these two connection methods can be used as the strengthening method to verify the compressive composite action of concrete and steel pipe pile.

  • PDF

수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구 (Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change)

  • 김우영;장암
    • 대한환경공학회지
    • /
    • 제39권12호
    • /
    • pp.733-740
    • /
    • 2017
  • 환경부에서 수립한 "상수도 시설기준(2004)"은 관로 신축이음관 설치기준에 있어서는 용접이음 강관에는 설치하지 않는 것으로 규정하고 있으며, 이에 대한 근거가 명확하지 않고 관로 안정성이 충분히 확보되었는지 확인하기가 어렵다. 금번 연구에서는 강관의 거동 분석을 통한 관로 안정성을 연구하여 신축이음관의 필요여부를 검증하는 것을 목적으로 하였다. 검토결과는 아래와 같다. 첫째, 아스팔트 도복장강관(D2,400 mm)은 온도변화에 따라 4-cycle로 관로 신 수축이 반복되며, 연장 1.24 km에 있어 최대 13.03 mm의 변위를 나타내었다. 둘째, 수도용 강관의 신 수축으로 발생되는 온도응력은 매설깊이(최대 4 m)에 따라 $13.7{\sim}36.1kgf/cm^2$로 발생되며, 강관(STWW 400)의 안정성에 큰 영향을 키치는 주요 비교인자인 허용 인장강도와 피로한도는 $4,100kgf/cm^2$$1,840kgf/cm^2$로 산출되었다. 마지막으로, 수도용 강관의 온도응력은 허용 인장강도와 피로한도와 비교시 매우 작음에 따라, 온도변화에 의한 관로의 신 수축이 발생하여도 관로 안정성에는 영향을 끼치지 못함을 알 수 있었다. 결론적으로 금번 연구를 통하여 수도용 강관의 관로부에는 신축이음관을 설치할 필요가 없는 것으로 증명되었다.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.