• Title/Summary/Keyword: Pipe insulation

Search Result 95, Processing Time 0.026 seconds

A Study on the Effect of Porous CaCO3 on Micro-cellular Plastics as an Additive for Nucleation (다공성 $CaCO_{3}$가 발포핵제로서 초미세 발포에 미치는 영향)

  • Lee, Dong-Wook;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.991-996
    • /
    • 2004
  • Plastics are widely used in industry, because they are light, easily manufactured, and have high specific strength. And many researches to increase the strengths and to reduce the price are being conducted at now. One of these researches is concerning to additives. Foaming techniques are used to endow insulation properties, to improve specific strength, or reduce the material cost. Due to their unique properties, foamed plastics are applied to refrigerator, pipe, and insulators. Micro-cellular foaming is the latest foaming technique that was invented at 1980 in MIT. It is known that many tiny small cells are generated in the polymer matrices and micro-cellular foamed plastics show relatively high specific strength. We investigated the role of CaCO3 which is one of the most widely used additives in plastics industry as an additive for nucleation in view of cell morphology. CaCO3 used in this paper was treated to increase the dispersibility and to lower the density, so it has many pores at his body. Two experiments were conducted, in order to check the role of an additive for nucleation. One is compound-ability and the other one is role of nucleation agents.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE (위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF

Development of Real Time On-Line Thickness Measuring System for Insulated Pipeline (단열배관의 온라인 두께측정시스템 개발)

  • Jang, Ji-Hun;Kim, Byeong-Ju;Jo, Gyeong-Sik;Kim, Gi-Dong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.65-76
    • /
    • 2002
  • The intensity of x-ray or gamma-ray is attenuated according to density and thickness of the transmitted medium. In this study, by using this principle, on-line real-time radiometric system was developed using a 128 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses a Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer. This system collects and analyses the data from the detector array in real-time. The maximum measurable length of pipe is 120cm/mm. in the case of 1mm scanning interval.

  • PDF

A Study on the fire characteristic of pipe insulation film materials in the pit room of the skyscraper (고층건물 피트실 배관보온필름의 화재특성에 관한 연구)

  • Lee, Young-Sam;Kim, Jin-Su;Jang, Jae-Soon;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.7-10
    • /
    • 2012
  • 최근 고층건물 화재의 대표적 사례인 부산 해운대 우신골드스위트 주상복합건물 화재 확대의 주요 원인으로 작용했던 석유화학제품 중 배관보온재를 감싸고 있는 보온필름의 화재특성에 대해 연구를 하였다. 본 화재결과 배관보온필름이 화재취약성을 가지고 있는 것으로 확인되었다. 하지만 명확한 법적규제가 없는 것과 시공비 절감을 위해 대부분의 공사업자들은 비난연제품으로 시공을 하고 있는 실정이다. 따라서 본 연구에서는 이러한 잘못된 시공으로 인한 위험성을 알리고자 하는데 목적이 있다. 연구방법은 국내에서 생산된 마감용 배관 보온필름 네 종류를 사용하여 화재특성을 분석하였다. 네 종류 중 두 종류는 난연성능이 있는 제품이고 나머지 두 종류는 난연성능이 없는 제품으로 선정하였다. 실험은 제품의 열방출률을 알기위해 콘칼로리미터를 사용하였고 또한 실제 피트 내에 배관보온필름 화재를 묘사하기 위해 45도연소시험기를 사용하여 연소실험을 하였다.

  • PDF

A Study on Effects of Temperature Difference between the Inside and Outside the Meter-Run on Natural Gas Flow Measurement Errors (천연가스 계량배관 내$\cdot$외의 온도차가 계량오차에 미치는 영향에 관한 연구)

  • Ha Youngcheol;Lee Chulgu;Chang Seungyong;Lee Kangjin
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Experiments had been conducted Qualitatively regarding flow measurement errors of orifice flowmeter due to temperature difference between the inside and outside the natural gas meter-run in case of no pipe insulations. The primary factors considered in this study are fluid velocity and surrounding temperature. In addition, a portion of thermal radiation due to the sun was involved as a factor. The results showed that the considerable errors were not detected even in conditions of low flow rates and large temperature difference between the inside and outside the meter-run.

  • PDF

A Study on the Korean Ondol-System Application in Apartment Houses (공동주택의 한국형 온돌시스템 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho;Yu, Ki-Hyung;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.860-865
    • /
    • 2006
  • The traditional Korean Ondol System that is a radiant floor heating system was made as warm floor and cool indoor temperature. Nowaday, Ondol is developed as the hydronic floor heating system. But unbalance of floor temperature and indoor temperature is occurred bocause strengthen thermal insulation and airtightness in building changes thermal performance. To solve these problems, we examine actual indoor environment of heating system methods in existing apartments and present the new method of floor heating system. The existing heating system made definite indoor temperatures but floor temperatures that is $22^{\circ}C-26^{\circ}C$ was maintained. To solve these problems, we adopted the differential heating system which made warm area and cool area. A differential heating system was made different pitches of heating pipe in single zone and ratio of warm area to cool area is 1 to 2. As a result of experiments, warm area temperature is $40.7^{\circ}C$, cool area temperature is $36.1^{\circ}C$. A difference of temperature between both area is 4K. A distribution of indoor vertical temperature is similar to both warm area and cool area.

  • PDF

An Experimental Study on Thermal Conductivity of Controlled Low Strength Materials with Coal Ash (석탄회를 활용한 CLSM의 열전도도에 관한 실험적 연구)

  • Lee, Seung Jun;Lee, Jong Hwi;Cho, Hyun Soo;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.95-104
    • /
    • 2012
  • Due to current interest in creation of urban space and urban landscape, more emphasis has been placed on underground space development. With increasing number of underground power cables and its importance, a study of backfill materials for pipe is now imperative. Backfill materials require outstanding thermal characteristics since breakdown of cable insulation can be caused if heat generated from transmission of underground power cables had not been effectively discharged through backfill materials. Also, coal ash, which are industrial by-products, is being produced in high volume every year. Among them, ponded ash (PA) is not recycled and instead, mostly buried. Therefore in this study, thermal conductivity test based on mixture ratio (PA, ponded ash : FA, fly ash) was performed to evaluate the thermal conductivity characteristics of CLSM (controlled low strength materials) with coal ash. The results indicate that the mixture ratio (PA, ponded ash : FA, fly ash) of 80:20, water contents of 28~30%, and cement contents of 7-11% showed the highest conductivity at 0.796~0.884W/mK and thus, considered optimal in terms of recycling ponded ash (PA) as well as for maximizing utilization as backfill materials for pipe in underground.

A Study on the System Integrity of Gas Pipeline by High Voltage Power Line in Submarine Tunnel (절점망 해석프로그램을 이용한 해저터널 내 고전압 전력케이블에 의한 가스배관의 안전성 평가 연구)

  • Bae Jeong-Hyo,;Ha Tae-Hyun,;Lee Hyun-Goo,;Kim Dae-Kyeong,
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.21-26
    • /
    • 2001
  • Because of the continuous growth of energy consumption, and also tile tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Recently, the results of assessment about a system integrity are needed in korea also when a gas pipeline is running parallel with high voltage power line in same submarine tunnel, Therefore, we analyze the system integrity(AC corrosion of pipe, melting of pipeline coating, safety of insulation flange, especially cathodic protection system which are rectifier and CI(cathodic Isolator)) resulting from the influence of high voltage power system.

  • PDF

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.