• 제목/요약/키워드: Pipe expansion

검색결과 164건 처리시간 0.026초

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • 최한석
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

A Review of the Expansion Behavior of Marine Pipelines

  • 최한석
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.13-19
    • /
    • 2008
  • A camprehensive review of the expansion behavior of marine pipelines due to thermal and pressure change is presented based on research work over the last 10 years. The review is organized into five main sections, namely free expansion with uniform temperature, free expansion with temperature gradient, expansion with end restraints, expansion of pipe-in-pipe system, and lateral deviation (snaking). Based on the accumulated knowledge of the interactions between the soil and pipeline behavior, a whole pipeline system can be modeled by an accurate finite element method (FEM). This methodology requires a comprehensive understanding and engineering verification of the expansion behavior of marine pipelines.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

상계법과 유한요소법을 이용한 확관금형 설계 (Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method)

  • 조용일;김승환;추연근;조해용
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.

수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구 (Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change)

  • 김우영;장암
    • 대한환경공학회지
    • /
    • 제39권12호
    • /
    • pp.733-740
    • /
    • 2017
  • 환경부에서 수립한 "상수도 시설기준(2004)"은 관로 신축이음관 설치기준에 있어서는 용접이음 강관에는 설치하지 않는 것으로 규정하고 있으며, 이에 대한 근거가 명확하지 않고 관로 안정성이 충분히 확보되었는지 확인하기가 어렵다. 금번 연구에서는 강관의 거동 분석을 통한 관로 안정성을 연구하여 신축이음관의 필요여부를 검증하는 것을 목적으로 하였다. 검토결과는 아래와 같다. 첫째, 아스팔트 도복장강관(D2,400 mm)은 온도변화에 따라 4-cycle로 관로 신 수축이 반복되며, 연장 1.24 km에 있어 최대 13.03 mm의 변위를 나타내었다. 둘째, 수도용 강관의 신 수축으로 발생되는 온도응력은 매설깊이(최대 4 m)에 따라 $13.7{\sim}36.1kgf/cm^2$로 발생되며, 강관(STWW 400)의 안정성에 큰 영향을 키치는 주요 비교인자인 허용 인장강도와 피로한도는 $4,100kgf/cm^2$$1,840kgf/cm^2$로 산출되었다. 마지막으로, 수도용 강관의 온도응력은 허용 인장강도와 피로한도와 비교시 매우 작음에 따라, 온도변화에 의한 관로의 신 수축이 발생하여도 관로 안정성에는 영향을 끼치지 못함을 알 수 있었다. 결론적으로 금번 연구를 통하여 수도용 강관의 관로부에는 신축이음관을 설치할 필요가 없는 것으로 증명되었다.

벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석 (Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction)

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

축대칭 급확대관으로 분사되는 난류분사류의 초기유동 특성 (Initial Flow Characteristics of the Turbulent Circular Jet Discharging into the Sudden Expansion Pipe)

  • 김동식;한용운
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3335-3344
    • /
    • 1994
  • The initial flow characteristics of the turbulent circular jet discharging into the sudden expansion pipes have been investigated by the hot wire anemometry. Evolutions of similarity, centerline behavior, jet boundary and typical turbulent quantities were looked into for the expansion ratios. The results show that the spreading rates of discharging jet seem not to be dependent of the expansion ratio and that the velocity profiles in the radial directions exhibit the similarity in the regions, 2-5d, 2-6d and 3-8d for the corresponding expansion rations of 2, 3 and 5, respectively. With the increase of expansion ratio the centerline velocity decays rather slowly. The anisotropic behaviors of the discharging jets into the sudden expansion pipe look stronger than those of the free jet.

회전.비회전 복합 히트파이프 개발과 성능 시험 (Performance Test and Development of the Composite Heat Pipe with Rotating and Static Heat Pipe)

  • 이영수;장영석
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this research is to study the charateristics and manufacture of a composite heat pipe system with rotational and static pipe. A composite heat pipe system were tested to obtain the relationship between the expansion injector and auxiliary expansion for the motion of the working fluid by the experimental results. In addition the heat transport characteristics were found based on wall temperature of rotor, expansion injector, storage tank and vapor temperature. Water is used as working fluid of heat pipes. As the results of experiments, the composite heat pipe was operated for long times, 10 hour above with various rotational speed in performance. There were a few unexpected data by the capillary pumped loop at small working fluid, but as a whole the testing was successful.

  • PDF

지지력 향상을 위한 확장형 강관말뚝에 관한 연구 (Development of Expandable Steel Pipe Piles to Improve Bearing Capacity)

  • 김의석;김정훈;김지윤;민병찬;최항석
    • 한국지반환경공학회 논문집
    • /
    • 제22권12호
    • /
    • pp.5-13
    • /
    • 2021
  • 기존의 뜬구조공법의 문제점을 개선하여 지하층 리모델링, 증축 시 안정성 확보와 공사비 절감이 가능한 공법을 개발하기 위하여 일반적인 마이크로파일에 비해 경제적이고 안정성 높은 확장형 강관말뚝을 개발하였다. 확장형 강관말뚝은 지중에서 강관을 확장하여 강관의 성능을 향상하는 공법으로 본 논문에서는 확장형 강관말뚝의 강관 형상에 따른 좌굴강도의 변화를 파악하고, 수치해석 모델을 개발하여 강관확장으로 인한 요철부의 턱효과를 규명하고, 재료시험을 통하여 최적 강관 확관량을 산정하였다. 강관의 확장 직경이 클수록 확관 턱 개수가 많을수록 좌굴강도가 커짐을 알 수 있었으며, 수치해석 결과에 따르면 확관률보다 확관 턱 개수가 좌굴강도에 큰 영향을 미침을 알 수 있었으며, 확관률는 1.2배 이상일 때, 확관 턱 개수는 증가할수록 좌굴강도 증가 효과가 크게 발생함을 알 수 있었다. 또한, 확장 각도가 45° 이하이고, 확관률이 1.3배 이상일 때 요철부의 턱효과가 크게 발생하는 것을 알 수 있었다. 강관이 파단되는 항복 시, 신율은 20~32%로 평균 25.4% 수준으로 확인되어 그 이상 변형은 강관의 성능을 발휘할 수 없었다. 재료시험을 통해 강관의 성능을 발휘하기 위한 최대 확관량은 항복 시 최저값으로 확인된 신율 20%에 안전측 80%를 고려하여 16%로 제한하는 것이 바람직한 것으로 분석되었다.

유속과 유동교란인자에 의한 전자식 및 초음파식 유량계의 오차특성 연구 (A Study on Error Characteristic of Flow Disturbance and Velocity for Electromagnetic and Ultrasonic Flowmeters)

  • 이동근;박종호
    • 한국유체기계학회 논문집
    • /
    • 제12권5호
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the effect of flow disturbance such as contraction, expansion pipe and velocity deviation from low velocity of $0.1\;^m/s$ to $2.5\;^m/s$ on the error characteristics of the flowmeter was studied. Flow experiments using flowmeter calibration facility of K-water were undertaken for the cases of ultrasonic flowmeter based on transit-time method and electromagnetic flowmeter. Experimental results are presented that measurement error of expansion pipe are larger than contraction pipe. It is shown that the minimum straight length were required to remain of ${\pm}0.5%$ error for electromagnetic flowmeter and ${\pm}2.0%$ error for ultrasonic flowmeter.