• 제목/요약/키워드: Pipe bending

Search Result 289, Processing Time 0.026 seconds

Crack Opening Displacement Analysis of Complex Cracked Pipes based on Enhanced Reference Stress Method (개선된 참조응력법을 이용한 복합균열이 존재하는 배관의 균열개구변위 계산)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.80-86
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement (COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

  • PDF

Simplified modelling of continous buried pipelines subject to earthquake fault rupture

  • Paolucci, Roberto;Griffini, Stefano;Mariani, Stefano
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.253-267
    • /
    • 2010
  • A novel simple approach is presented for the seismic analysis of continuous buried pipelines subject to fault ruptures. The method is based on the minimization of the total dissipated energy during faulting, taking into account the basic factors that affect the problem, namely: a) the pipe yielding under axial and bending load, through the formation of plastic hinges and axial slip; b) the longitudinal friction across the pipe-soil interface; c) the lateral resistance of soil. The advantages and drawbacks of the proposed method are highlighted through a comparison with previous approaches, as well as with finite element calculations accounting for the 3D kinematics of the pipe-soil-fault systems under large deformations. Parametric analyses are also provided to assess the relative influence of the various parameters affecting the problem.

New Engineering Approach for Estimating Crack Opening Displacement of Complex Cracked Pipes (복합균열이 존재하는 배관의 균열개구변위 계산을 위한 새로운 공학적 계산식)

  • Kim, Yeong-Jin;Heo, Nam-Su;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1235-1241
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement(COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

Effect of Wall Thinning on the Failure of Pipes Subjected to Bending Load (굽힘하중을 받는 배관의 파손에 미치는 감육의 영향)

  • Ahn Seok-Hwan;Nam Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.606-613
    • /
    • 2005
  • Effects of circumferentially local wall thinning on the fracture behavior of pipes were investigated by monotonic four-point bending. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area included an eroded ratio of d/t= 0.2, 0.5, 0.6, and 0.8, and an eroded length of ${\ell}\;=10mm,$ 25mm, and 120mm. Fracture type could be classified into ovalization, local buckling, and crack initiation depending on the eroded length and eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors excepting failure due to cracking. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

Vibration Analysis of Expansion Joint with Rotary Inertia Using Transfer Matrix Method (전달행렬법을 이용하여 회전관성을 고려한 Expansion Joint의 진동해석)

  • Shin, Dong-Ho;Oh, Jae-Eung;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.544-549
    • /
    • 2011
  • Simplified formulae for axial and bending natural frequencies of bellows are developed using an equivalent thin-walled pipe model. The axial and bending stiffness of bellows is determined using lumped transfer matrix method. Accordingly, the Expansion Joint Manufacturers Association (EJMA) formula for axial and bending stiffness calculation is modified using two different equivalent radii. The results from the simplified formulae are verified by those from a experiment result and a finite element (FE) model and good agreement is shown between the each other.

  • PDF

Behavior of Curved Pipes under In-Plane Bending (면내굽힘에서 곡선배관의 거동특성)

  • Lee, Sang-Ho;Song, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.480-486
    • /
    • 2008
  • The pipe elbows subjected to in-plane bending moments are analyzed with the finite element method. The results from the finite element analysis are compared with ASME code equations that are theoretical closed form solutions. The geometric nonlinear effects due to the ovalization are explained with the magnitude and the types of the stresses and the flexibilities of the elbows with the emphasis on the bend angles and elbow factors.

Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior (소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델)

  • Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.