• Title/Summary/Keyword: Pipe Resonance

Search Result 73, Processing Time 0.024 seconds

Improvement of the Vibration Characteristics for the Oil Pipe Support Structure of the Crude Oil Carrier (설계개선에 의한 원유운반선 송유관 지지구조물의 진동 저감)

  • Kim Heui-Won;Park Jin-Hwa
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.69-75
    • /
    • 2005
  • Recently it was reported that the vibration problems on the oil pipe support structure of the crude oil carrier were occurred. in order to investigate the vibration characteristics and the causes of the vibration occasionally. the vibration measurements and impact tests for the oil Pipe structure were carried out. From the measurement results severe vibration was caused by the resonance between the transversal natural frequency of the structure and $6^{th}$ order excitation force of the main engine. Providing the proper countermeasures a series of the vibration analyses were carried out based on the measurement results. From the analysis results, it was concluded that the vibration characteristics of the oil pipe structure were affected by the oil pipes, support structure itself, upper deck structure and the installation spaces and the standard design was established for the crude oil carriers.

  • PDF

A Diagnosis and Solution Case of Structural Vibration caused by Pipe (배관에 의한 구조진동 진단 및 대책)

  • Lee, J.H.;Gu, D.S.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.18-22
    • /
    • 2008
  • A few intake stations have vibration problems caused by pipes. The vibration transffered from pipes excites building severely. Therefore, the crack is generated on building wall and people who work at intake station are damaged. In this paper, the vibration is measured and analysis is carried out for pipes at intake station in order to identify the usefulness and effectiveness of the solution proposed for pipe resonance avoidance. According to the result of analysis, the vibration of pipes is reduced by bellows.

  • PDF

A diagnosis and solution case of structural vibration caused by pipe (배관에 의한 구조진동 진단 및 해결 사례)

  • Lee, Jeong-Hwan;Gu, Dong-Sik;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1371-1374
    • /
    • 2007
  • A few intake stations have vibration problems caused by pipes. The vibration transffered from pipes excites building severely. Therefore, the crack is generated on building wall and people who work at intake station are damaged. In this paper, the vibration is measured and analysis is carried out for pipes at intake station in order to identify the usefulness and effectiveness of the solution proposed for pipe resonance avoidance. According to the result of analysis, bellows is reduced the vibration of pipes.

  • PDF

A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline (유압관로의 주파수변화 따른 압력전파특성)

  • 유영태;나기대;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan

  • Tsujimoto, Yoshinobu;Tanaka, Hiroshi;Doerfler, Peter;Yonezawa, Koichi;Suzuki, Takayuki;Makikawa, Keisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.75-86
    • /
    • 2013
  • The effects of acoustic resonance and volute geometry on phase resonance are studied theoretically and experimentally using a centrifugal fan. One dimensional theoretical model is developed taking account of the reflection from the discharge pipe end. It was found that the phase resonance occurs, even with the effects of acoustic resonance, when the rotational speed of rotor-stator interaction pattern agrees with the sound velocity. This was confirmed by experiments with and without a silencer at the discharge pipe exit. The pressure wave measurements showed that there are certain effects of the cross-sectional area change of the volute which is neglected in the one dimensional model. To clarify the effects of area change, experiments were carried out by using a ring volute with a constant area. It was demonstrated that the phase resonance occurs for both interaction modes travelling towards/away from the volute. The amplitude of travelling wave grows towards the volute exit for the modes rotating towards the volute exit, in the same direction as the impeller. However, a standing wave is developed in the volute for the modes rotating away from the volute exit in the opposite direction as the impeller, as a result of the interaction of a growing wave while travelling towards the tongue and a reflected wave away from the tongue.

The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system (트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구)

  • Kim, Jaehwan;Song, Seeyeop;Lim, Hyosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.340-343
    • /
    • 2019
  • In this paper, a problem of mechanical resonance between traction motor's rigid body mode and traction motor's excitation force is introduced, and a bogie design variable affecting the control of resonance response is reviewed numerically. To solve the resonance problem in rotating machinery with variable rotational speeds, resonance frequency should be out of rotational machine's operation range or dynamic stiffness of structures should be increased for resonance response enough to be low. In general, operation range of a traction motor is from 0 r/min to 4800 r/min. It is not possible that all bogie modes are more than 80 Hz. Therefore, it is very important to find design factor affecting resonance response of traction motor's rigid body modes. It is found that key design variable is the gab between transom pipes from finite element analysis. The larger gab is, the higher resonance response when resonance between traction motor's excitation force and traction motor's rigid body mode is happened.

Characteristics of Forced Vibration of Valve-pipe Systems with a Crack (크랙을 가진 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Kim, Chang-Ho;Cho, Jeong-Rae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1049-1056
    • /
    • 2012
  • The forced vibration response characteristics of a cracked pipe conveying fluid with a concentrated mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of concentrated mass and fluid velocity on the forced vibration characteristics of a cracked pipe conveying fluid are studied. The deflection response is the mid-span deflection of a cracked pipe conveying fluid. As fluid velocity and crack depth are increased, the resonance frequency of the system is decreased. This study will contribute to the decision of optimum fluid velocity and crack detection for the valve-pipe systems.

Research of Vibration Analysis and Resonance Avoidance Design of Composite Quadcopter (복합재 쿼드콥터의 진동 특성 분석과 공진 회피에 대한 연구)

  • Kim, Sang-Ryul;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • In this research, the vibration characteristics of composite quadcopter are analyzed, and avoidance design and analysis are performed to avoid resonance. The full platform of a commercial quadcopter with composite rotor arm is analyzed to see the vibration characteristics using FEM program. The manufactured stacking sequences of rotor arm is used for analysis, and the natural frequencies are compared with experimental results and simple analytic model results. It is also confirmed that the natural frequency of the particular mode is included within the operation range of the motor. The resonance avoidance design is carried out by selecting three variables from the existing model: stacking sequence, rotor-arm pipe length, and pipe thickness.

A Study of Structural Response of Pipes due to Internal Gaseous Detonation of Hydrogen- and Hydrogen-Air Mixtures (수소와 탄화수소 계열 연료의 비정상 연소에 의한 파이프 변형 연구)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1094-1103
    • /
    • 2008
  • A fuel specific detonation wave in a pipe propagates with a predictable wave velocity. This internal detonation wave speed determines the level of flexural wave excitation of pipes and the possibility of resonant response leading to a large displacement. In this paper, we present particular solutions of displacements and the resonance conditions for internally loaded pipe structures. These analytical results are compared to numerical simulations obtained using a hydrocode(multi-material blast wave analysis tool). We expect to identify potential explosion hazards in the general power industries.

Modeling of the Structural Response of Pipes to Internal Blast Loading (관내 전파되는 파동에 대한 파이프의 구조적 반응에 대한 모델링)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.9-13
    • /
    • 2008
  • The moving load such as a shock wave in a pipe propagates with a specific velocity. This internal load speed determines the level of flexural wave excitation and the possibility of resonant response leading to a large deformation. In this paper, we present particular solutions of displacements and the resonance conditions when the moving load is propagating in a pipe. These analytical results are compared to numerical simulations obtained using a hydrocode. We expect to identify potential explosion hazards in the general power industries.

  • PDF