• Title/Summary/Keyword: Pipe Network Analysis

Search Result 154, Processing Time 0.033 seconds

Vibration-Based Damage Detection Method for Tower Structure (타워 구조물의 진동기반 결함탐지기법)

  • Lee, Jong-Won;Kim, Sang-Ryul;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.320-324
    • /
    • 2013
  • A crack identification method using an equivalent bending stiffness for cracked beam and committee of neural networks is presented. The equivalent bending stiffness is constructed based on an energy method for a straight thin-walled pipe, which has a through-the-thickness crack, subjected to bending. Several numerical analysis for a steel cantilever pipe using the equivalent bending stiffness are carried out to extract the natural frequencies and mode shapes of the cracked beam. The extracted modal properties are used in constructing a training patterns of a neural network. The input to the neural network consists of the modal properties and the output is composed of the crack location and size. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated crack locations and sizes from different neural networks are averaged. Experimental crack detection is carried out for 3 damage cases using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

  • PDF

Sequential optimization for pressure management in water distribution networks

  • Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.169-169
    • /
    • 2023
  • Most distributed water is not used effectively due to water loss occurring in pipe networks. These water losses are caused by leakage, typically due to high water pressure to ensure adequate water supply. High water pressure can cause the pipe to burst or develop leaks over time, particularly in an aging network. In order to reduce the amount of leakage and ensure proper water distribution, it is important to apply pressure management. Pressure management aims to maintain a steady and uniform pressure level throughout the network, which can be achieved through various operational schemes. The schemes include: (1) installing a variable speed pump (VSP), (2) introducing district metered area (DMA), and (3) operating pressure-reducing valves (PRV). Applying these approaches requires consideration of various hydraulic, economic, and environmental aspects. Due to the different functions of these approaches and related components, an all-together optimization of these schemes is a complicated task. In order to reduce the optimization complexity, this study recommends a sequential optimization method. With three network operation schemes considered (i.e., VSP, DMA, and PRV), the method explores all the possible combinations of pressure management paths. Through sequential optimization, the best pressure management path can be determined using a multiple-criteria decision analysis (MCDA) to weigh in factors of cost savings, investment, pressure uniformity, and CO2 emissions. Additionally, the contribution of each scheme to pressure management was also described in the application results.

  • PDF

A Development of Program on the Hydraulic Calculation in Sprinkler System Based on the Piping Network Analysis Method (배관망 해석 방법을 이용한 스프링클러 시스템의 수리계산 프로그램 개발)

  • 송철강;이명호;강계명
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • The purpose of this study is developing the computer program for hydraulic design sprinkler systems have performed the means for the general use of network analysis method. The computer program is based on the theoretical concepts of the related Hazen-Williams equations, a modified Bernoulli equations, and the Hardy Cross method of pipe network analysis. Looped piping calculations are solved by using either the Hardy Cross method or the other iteration methods. While the other methods are solved using simultaneous equations, the Hardy Cross method is concerned with one loop at a time using reiterative process. Due to its simplicity the Hardy Cross method will be the primary method described in this thesis. The purpose of this study is to develope hydraulic calculation program by using algorithm for network analysis method. The development of computer program for the hydraulic design of sprinkler systems will perform the means in the performance-based sprinkler system design.

A Development of Methodology for NOVEC Gas Fire Extinguishing System (NOVEC 가스 소화 설비 설계방법론 개발)

  • Yun, Jeong-In;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.206-210
    • /
    • 2015
  • The most important thing for NOVEC gas fire extinguishing equipment is to release NOVEC gas, which contained in the extinguishing container, to the safety section by the time appointed. For this matter, it is significant to decide arrangement and size of the proper piping equipment. This study has developed the design methodology of NOVEC gas fire extinguishing equipment in use of pipe network analysis techniques. Based on the design methodology, each design coefficient is chosen. It is found that the calculated result, which is 6.498 seconds, has been counted within the 10 seconds limit, which is fairly satisfied with extinguishing releasing time based on the developed methodology. At that time, the pressure loss is 21.09bar.

Artificial Intelligence-based Leak Prediction using Pipeline Data (관망자료를 이용한 인공지능 기반의 누수 예측)

  • Lee, Hohyun;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.963-971
    • /
    • 2022
  • Water pipeline network in local and metropolitan area is buried underground, by which it is hard to know the degree of pipe aging and leakage. In this study, assuming various sensor combinations installed in the water pipeline network, the optimal algorithm was derived by predicting the water flow rate and pressure through artificial intelligence algorithms such as linear regression and neuro fuzzy analysis to examine the possibility of detecting pipe leakage according to the data combination. In the case of leakage detection through water supply pressure prediction, Neuro fuzzy algorithm was superior to linear regression analysis. In case of leakage detection through water supply flow prediction, flow rate prediction using neuro fuzzy algorithm should be considered first. If flow meter for prediction don't exists, linear regression algorithm should be considered instead for pressure estimation.

Development of a Method to Reduce Damages by Pipe Failures (상수관 파괴에 의한 피해 경감기법의 개발)

  • Jun, Hwan-Don;Kim, Seok-Hyeon;Park, Moo-Jong;Kim, Joong-Hoon;Lee, Hwan-Goo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.31-36
    • /
    • 2008
  • A water distribution system should be constructed reasonably to supply water for the customer with proper quality and pressure as demands at nodes fluctuate with time. Also it should be reliable to minimize undesirable effects on the customer when various accidents happen such as pipe failures. A new method is presented here to reduce damages by pipe failures. For the work, two methods, namely, the method for estimating practical extent of damage by pipe failures and for estimating water distribution reliability, are adopted to analyze a water distribution system and to explore the damage reduction by pipe failures. As the results from the analysis of the model, the damage can be reduced effectively by increasing durability of each pipe in minimum cutsets according to the order of priority. The suggested method was applied to the Cherry-Hill network to verify its applicability.

Risk analysis of the old pipe networks for priority determination of renovation (노후 상수관망 개량 우선순위 결정을 위한 구역별 위험도 분석)

  • Lee, Jae Hyeon;Lee, Sang Mok;Park, Byung Soo;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1167-1175
    • /
    • 2022
  • In this study, management index method has been developed to estimate the level of deterioration, applied to Cheongju city, and compared with the previous estimation methods of deterioration level of water distribution system. From the results, distribution systems of Yullyang, Naedeok1 and Yongam2 are found to be seriously deteriorated. And it was also found that probability of pipe breakage was estimated as 3.21%, 4.64% which is highest level at the steel pipe of 200 mm and 300 mm diameter. It was found that risk degree was estimated as 0.2609, 0.2644 by using management index method in Naedeok1 which is the most dangerous distribution system in the city. It was also found that results of risk analysis by management index method have been similar with the results of safety analysis by reliability method and indirect estimation method of deterioration level. Therefore, newly developed management index method can be applied and may be useful to the estimation of deterioration level for the future maintenance and management of water distribution system.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline (도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가)

  • Eunher Shin;Gimoon Jeong;Kyoungpil Kim;Taeho Choi;Seon-ha Chae;Yong Woo Cho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.