• Title/Summary/Keyword: Pipe Leakage Detection

Search Result 41, Processing Time 0.031 seconds

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

A Study on Leakage Detection Technique Using Transfer Learning-Based Feature Fusion (전이학습 기반 특징융합을 이용한 누출판별 기법 연구)

  • YuJin Han;Tae-Jin Park;Jonghyuk Lee;Ji-Hoon Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • When there were disparities in performance between models trained in the time and frequency domains, even after conducting an ensemble, we observed that the performance of the ensemble was compromised due to imbalances in the individual model performances. Therefore, this paper proposes a leakage detection technique to enhance the accuracy of pipeline leakage detection through a step-wise learning approach that extracts features from both the time and frequency domains and integrates them. This method involves a two-step learning process. In the Stage 1, independent model training is conducted in the time and frequency domains to effectively extract crucial features from the provided data in each domain. In Stage 2, the pre-trained models were utilized by removing their respective classifiers. Subsequently, the features from both domains were fused, and a new classifier was added for retraining. The proposed transfer learning-based feature fusion technique in this paper performs model training by integrating features extracted from the time and frequency domains. This integration exploits the complementary nature of features from both domains, allowing the model to leverage diverse information. As a result, it achieved a high accuracy of 99.88%, demonstrating outstanding performance in pipeline leakage detection.

Development of leakage test facility for leak signal characteristic analysis in water pipeline (상수도관로 누수신호의 특성 분석을 위한 누수 실험시설 개발)

  • Park, Sanghyuk;Kwak, Philljae;Lee, Hyundong;Choi, Changho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.459-469
    • /
    • 2017
  • A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.

The Development and Introduction of External Corrosion Direct Assessment Measures for Urban Gas Pipelines (외면부식 직접평가법 개발 및 국내 도입 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Yoon, Yung-Ki;Lim, Ho-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 2014
  • To minimize the risk of corrosion on buried pipeline and to maximize the efficiency of cathodic protection, various indirect inspection techniques have been used for decades. In the United States, 49 CFR has regulated the external corrosion direct assessment for buried pipelines. In Korea, there is no provision for external corrosion direct assessment but there is only, according to the KGS Code, provision that if the survey of the defects of buried pipeline and the leakage test for the pipe were conducted, it is deemed to leakage inspection. We, therefore, have suggested external corrosion direct assessment method appropriate to domestic status through the survey of the regulations and standards of UK and the USA and the investigation of domestic situation on coating damage detection method. The proposed external corrosion direct evaluation method was used as the basis when introducing the precision safety diagnosis regulation for the medium-pressure pipe in Korea.

An Experimental Study on Detection of Gas Leakage Position by Monitoring Pressure Values at City Gas Pipeline (압력값 모니터링을 통한 배관 내 가스누출감지에 대한 실험적 연구)

  • Jin, Kyoung-Min;Choi, Gyu-Hong;Lee, Song-Kyu;Chung, Tae-Yong;Shin, Dong-Hoon;Hwang, Seung-Sik;Oh, Jeong-Seok
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.292-297
    • /
    • 2011
  • Gas pipeline safety management and risk prediction are recognized as a very important issue. And the effort to prevent accidents is essential. So, in this study, it was studied through correlation of pressure changes for leak point detection in real-time. It experimented by installing the five leakage valves in the pipe of 378 m and compared the actual leak points with simulation results. The results showed that experimental leak points and the actual leak points have differences within the 6 m. And this technology has to be commercialized by the demonstration in dangerous zone.

Implementation of RTD-2000 Based Waterworks Pipe Network Monitoring System using Internet Map Service (범용지도를 이용한 RTD-2000 기반의 상수도 관망 모니터링 시스템의 구현)

  • Park, Jun-Tae;Hong, In-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1450-1457
    • /
    • 2011
  • Currently most of leak detection monitoring systems use digital maps with paying royalties, and this increases the cost of system construction and financial burdens on local self-governing bodies that manage such systems. Moreover, they have inefficiencies in repair and maintenance, functional expansion, and compatibility with other systems. Thus, this study developed a waterworks pipe network monitoring system that pursues low cost and high efficiency using general-purpose maps on the Internet such as google maps. As this system uses highly compatible free maps, it costs less in construction and its hardware requirements are lower than existing systems, and consequently, overall monitoring performance is enhanced and the cost of construction goes down sharply. This study also proposed a method for pipeline DB construction, which can be started together with the construction of the monitoring system, in order to improve the field applicability of the system.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

A Fundamental Study on Leak Detection System for Water Supply Valve Using Smart Bolt (상수도 밸브 누수 탐지용 스마트 볼트 적용의 기초 연구)

  • Park, Chul;Kim, Young-seok;Jung, Hae-Wook;Choi, Sang-sik;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2020
  • Purpose: This paper is a fundamental study on the applicability of the smart bolt developed for monitoring system to detect the leakage of water supply valve. Method: A leak detection experiments were conducted using the smart bolt having embedded strain sensors and accelerometer. The smart bolt used in study meets the allowable criteria of torque and tensile stress for water supply system, and it can be applied to a joint of the water supply valve by behaving well within the allowable limits. Result: As a result of the simulated leak tests, a leak signal at the valve leak point was detected in a band of 60Hz, and the main pipe leaking point was observed to produce a leak signal having much higher frequency than that of the valve leak point. This seems to result in a total coupled vibration under unconfined conditions of the pipes. Conclusion: The smart bolts appeared applicable to detecting a leaking signal from the water supply valve.

Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance (Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석)

  • SeokMin Oh;JinJe Park;Van-Quan Dao;ByungHo Jang;HeungJae Kim;ChangSoon Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer (CFD) are responsible for removing impurities from the circulation of refrigerant in refrigeration and cooling systems to maintain clean refrigerant, and defects in CFD can lead to product defects such as leakage and reduced lifespan in refrigeration and cooling systems, making quality assurance essential. In the quality inspection stage, human inspection and defect judgment methods are traditionally used, but these methods are subjective and inaccurate. In this paper, YOLOv7 object detection algorithm was used to detect defects occurring during the CFD Shaft pipe and welding process to replace the existing quality inspection, and the detection performance of F1-Score 0.954 and 0.895 was confirmed. In addition, the cause of defects occurring during the welding process was analyzed by analyzing the sensor data corresponding to the Timestamp of the defect image. This paper proposes a method for manufacturing quality assurance and improvement by detecting defects that occur during CFD process and analyzing their causes.

Determination Methods of Pressure Monitoring Location in Water Distribution System (상수관망에서 수압모니터링지점 선정방법)

  • Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1103-1113
    • /
    • 2013
  • In this study, determination methods of the pressure monitoring location in water distribution system were introduced and applied to sample pipe network. The best determination method of the pressure monitoring location was suggested and applied to the real city pipe network. Three kinds of determination methods of pressure monitoring locations are categorized such as the sensitivity analysis according to changing roughness coefficient, pressure contribution analysis, and sensitivity analysis according to changing demand. Further-more, pressure contribution analysis and sensitivity analysis from the results of unsteady analysis were conducted and compared each other. From the results, the most accurate and simplest method was selected in this study. Therefore, the best method can be applied for the pressure management or leakage detection as a determination method of pressure monitoring location in water distribution system.