• Title/Summary/Keyword: Pin-on-disk type tester

Search Result 38, Processing Time 0.017 seconds

Characteristics of friction and wear of the metals in boundary lubrication (경계윤활 상태에서의 금속재료의 마찰 및 마멸 특성)

  • 류종관;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.256-262
    • /
    • 1998
  • Many lubricated systems experience boundary, lubrication condition during operation. However, the friction and wear characteristics of boundary lubrication are not clearly understood. In this work the factors which affect the friction and wear between boundary lubricated metallic surfaces are investigated. Experiments were performed on atuminium, copper, and SM45C with bearing ball using a pin-on disk type tester. The experimental conditions were determined by Taguchi experimental method. From the experimental results, the major factors that influence the friction and wear characteristics of boundary lubrication could be identified.

  • PDF

Major Factors that Affect Friction and Wear of Metals in Boundary Lubrication (경계윤활 상태에서의 금속재료 마찰 및 마멸에 영향을 미치는 주요인자)

  • 류종관;이홍철;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • Many lubricated systems experience boundary lubrication condition during operation. However, the friction and wear characteristics of boundary lubrication are not clearly understood. In this work the factors which affect the friction and wear between boundary lubricated metallic surfaces are investigated. Experiments were performed using a pin-on-disk type tester with pure aluminum, pure copper, and SM45C steel as the disk material and steel, stainless steel and bearing ball as the ball. The experimental conditions were determined according to the Taguchi experimental method. From the experimental results, the major factors that influence the friction and wear characteristics of boundary lubrication could be identified.

Tribological Characteristics of MoS$_2$ Coatings in High Vacuum (고진공하에서의 $MoS_2$ 코팅의 트라이볼로지적 특성)

  • 권오원;김석삼;이상로
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.409-414
    • /
    • 2000
  • The friction and wear behaviors of MoS$_2$ coatings were investigated by using a pin and disk type tester. The experiment was conducted by using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding velocities in the range of 22-66 ㎜/sec, normal loads varying from 9.8 N to 29.4 N, corresponding to maximum contact pressures of 1.18-2.83 GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

Tribological Characteristics of MoS$_2$Coatings in High Vacuum

  • Kwon, Oh Won;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.91-94
    • /
    • 2000
  • The friction and wear behavior of MoS$_2$coatings was investigated using a pin and disk type tester. The experiment was conducted with silicon nitride as the pin material and MoS$_2$-on-bearing steel as the disk material under different operating conditions that included linear sliding velocities within a range of 2266 mm/sec, normal loads varying from 9.829.4 N, corresponding to maximum contact pressures of 1.782.83 Gpa, and high vacuum, medium vacuum, and ambient air atmospheric conditions. The results showed a low friction coefficient far the coating in a high vacuum, plus the friction coefficient and wear volume increased with an increased normal load. Furthermore, under high load conditions, the friction coefficient and wear volume also increased with an increased sliding velocity.

  • PDF

Tribological Characteristics of $MoS_2$Coatings in High Vacuum (고진공하에서의 MoS$MoS_2$코팅의 트라이볼로지적 특성)

  • 권오원;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.94-100
    • /
    • 1999
  • The friction and wear behavior of MoS$_2$Coatings were investigated using a pin and disk type tester. The experiment was conducted using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding speeds in the range of 22~66mm/sec, normal loads varying from 9.8~29.4N, corresponding to maximum contact pressure of 1.78~2.830GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified when running in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

  • PDF

Wear characteristics of boron nitride thin film for durability improvement of ultra- precision component (초정밀 부품의 내구성 향상을 위한 질화붕소 박막의 마멸 특성에 관한 연구)

  • Ku, Kyoung-Jin;Hwang, Byoung-Har;Lin, Li-Yu;Kim, Dae-Eun;Baik, Hong-Koo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.129-134
    • /
    • 2007
  • Boron nitride (BN) is a highly attractive material for wear resistant applications of mechanical components. BN is super hard and it is the second hardest of all known materials. It also has a high thermal stability, high abrasive wear resistance, and in contrast to diamond, BN does not react with ferrous materials. The motivation of this work is to investigate the tribological properties of BN for potential applications in ultra-precision components for data storage, printing, and other precision devices. In this work, the wear characteristics of BN thin films deposited on DLC or Ti buffer layer with silicon substrate using RF-magnetron sputtering technique were analyzed. Wear tests were conducted by using a pin-on-disk type tester and the wear tracks were measured with a surface profiler. Experimental results showed that wear characteristics were dependent on the sputtering conditions and buffer layer. Particularly, BN coated on DLC layer showed better wear resistant behavior. The range of the wear rates for the BN films tested in this work was about 20 to $100{\mu}m^3$/cycle.

  • PDF

Tribological characteristics of sputtered MoS$_2$films with Magnetron Sputtering Method in High Vacuum (Magnetron Sputtering법에 의해 증착한 MoS$_2$ 박막의 고진공하에서의 트라이볼로지적 특성)

  • 안찬욱;김석삼;이상로
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.406-413
    • /
    • 2000
  • The friction and wear behaviors of Magnetron Sputtered MoS$_2$films were investigated by using a pin on disk type tester which was designed and manufactured for this experiment. The experiment was conducted by using silicon nitride (Si$_3$N$_4$) as a pin material and Magnetron Sputtered MoS$_2$on bearing steel (STB2) as a disk material, under operating conditions that include different surface roughness (Polishing specimen, Grinding specimen)(2types), linear sliding velocities in the range of 22, 44, 66mm/sec (3types), normal loads vary from 9.8N, 19.6N, 29.4N(3types), corresponding to contact pressures of 1.9∼2.7GPa and atmospheric conditions of high vacuum( 1.3${\times}$10$\^$-4/Pa), medium vacuum( 1.3${\times}$10$\^$-l/Pa), ambient air(10$\^$5/Pa)(3types). We investigated fracture mechanism in magnetron sputtered MoS$_2$films with Magnetron Sputtering method in each experiment.

  • PDF

Sliding Wear Behavior of Plasma-Sprayed $Al_2$O$_3$-TiO$_2$ Coating against Cemented Carbide (Al$_2$O$_3$-TiO$_2$ 플라즈마 세라믹 코팅과 초경합금간의 미끄럼 마멸특성)

  • 이병섭;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.313-318
    • /
    • 2001
  • The sliding wear behavior of Plasma-Sprayed Al$_2$O$_3$-TiO$_2$ Coating against Cemented Carbide were Investigated using a pin on disk type tester. The experiment was conducted using Al$_2$O$_3$-TiO$_2$ Coaling as pin material and Cemented Carbide as disk material and different operating conditions, at room temperature under a dry conditions. The results showed that the type B(250kw power) appeared average wear rate Is lowed than type A(80kw power). The specific wear rate of Specimen A1 Increased with normal load. But The specific wear rate of Specimen B1 decreased with normal load. Average wear rate of specimen A3, B3 are lowed than other but the sliding wear mechanism of edge were rough.

  • PDF

The Effect of Sintering Condition On Tribological Behavior in the Cu-Base Sintered Friction Materials (동계 소결마찰재의 소결조건에 따른 마찰특성 고찰)

  • 김상호;김기열;정진현;이범주;정동윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.53-61
    • /
    • 1997
  • The effect of sintering condition on tribological behavior in the Cu-base sintered friction materials was studied through pin-on-disk type wear tester. Especially, the experiment was focused on making a comparative study between presstwed sintering and pressureless sintering. Pressureless sintering process showes more stable friction coefficient and lower wear rate than pressure sintering process. This result is related to pore size and density of pore in the sintered materials.

  • PDF

Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM (SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.