• 제목/요약/키워드: Pin-by-pin

검색결과 1,735건 처리시간 0.033초

조선 세종대에 창제된 정남일구 복원모델 연구 (STUDY ON THE RESTORATION MODEL OF JEONGNAM-ILGU, CREATED DURING THE REIGN OF KING SEJONG OF THE JOSEON DYNASTY)

  • 박지원;민병희;김상혁;김용기
    • 천문학논총
    • /
    • 제38권1호
    • /
    • pp.1-12
    • /
    • 2023
  • Numerous Sundials were fabricated during the reign of King Sejong of the Joseon Dynasty. One among them is Jeongnam-Ilgu (the Fixing-South Sundial), where the time can be measured after setting up the suitable meridian line without a compass. We reconstructed the new Jeongnam-Ilgu model based on the records of 'Description of Making the Royal Observatory Ganui (簡儀臺記)' in the Veritable Record of King Sejong. Jeongnam-Ilgu has a summer solstice half-ring under a horizontal ring which is fixed to two pillars in the north and south, and in which a declination ring rotates around the polar axis. In our model, the polar axis matches the altitude of Hanyang (that is Seoul). There are two merits if the model is designed to install the polar axis in the way that enters both the north and south poles and rotates in them: One is that it is possible to fix the polar axis to the declination ring together with the cross-strut. The other is that a twig for hanging weights can be protruded on the North Pole. The declination ring is supposed to be 178 mm in diameter and is carved on the scale of the celestial-circumference degrees on the ring's surface, where a degree scale can be divided into four equal parts through the diagonal lines. In addition, the time's graduation that is drawn on the summer solstice half-ring makes it possible to measure the daytime throughout the year. An observational property of Jeongnam-Ilgu is that a solar image can be obtained using a pin-hole. The position cast by the solar image between hour circles makes a time measurement. We hope our study will contribute to the restoration of Jeongnam-Ilgu.

CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구 (Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams)

  • 문아해;신지욱;임창규;이기학
    • 한국지진공학회논문집
    • /
    • 제26권2호
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계 (Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement)

  • 정안목;이학준
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.88-93
    • /
    • 2023
  • 고대역폭 메모리(HBM)에 대한 수요가 증가하고 직경이 더 큰 웨이퍼의 핸들링 기술이 발전함에 따라 본딩 웨이퍼의 두께 균일성에 대해 신뢰성을 확보할 수 있는 측정 방법이 요구되고 있다. 본 연구에서는 300mm 웨이퍼를 대상으로 웨이퍼의 전 영역에 대해 TTV를 측정할 수 있는 모듈을 설계 제직하고, 측정 모듈의 설계를 바탕으로 발생할 수 있는 측정 오차를 분석하였으며, 웨이퍼의 처짐과 척의 기구적 오차를 고려한 모델 해석을 통해 예측된 기울기 값에 따른 측정 오차를 추정하였다. TTV 측정 모듈은 웨이퍼 지지를 위한 센터 척과 리프트 핀을 활용하여 웨이퍼의 전체 영역에 대해 측정이 가능하도록 하였다. 모달 해석을 통해 모듈의 구조적 안정성을 예측하였으며, 구동부와 측정부 모두 100Hz 이상의 강성을 갖는 것을 확인하였다. 설계된 모듈의 측정 오차를 예측한 결과 두께 1,500um의 본딩 웨이퍼를 측정할 경우 예측된 측정 오차는 1.34nm로 나타났다.

다양한 기계적 하중조건에서 초기 형상이 솔더볼의 비탄성 변형에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Effect of Initial Shape on Inelastic Deformation of Solder Balls under Various Mechanical Loading Conditions)

  • 이다훈;임재혁;이은호
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.50-60
    • /
    • 2023
  • BGA(ball grid array)는 높은 집적도와 우수한 방열 성능을 갖고 있어 널리 이용되는 방식의 패키지이다. BGA에서 솔더볼은 패키지와 PCB를 전기적으로 연결하는 중요한 역할을 하므로, 다양한 기계적 하중 하에서 솔더볼의 비탄성 변형을 이해하는 것은 반도체 패키지의 강건설계에 필수적이다. 본 연구에서는 공정 중 PCB의 휨, die와 substrate 간의 열팽창 계수 차이 등으로 인해 소성변형이 발생한 솔더볼의 초기 형상이 비탄성 변형과 파단에 미치는 영향을 유한요소 해석으로 분석하였다. 시뮬레이션 결과, shear와 bending 하중에서 tilted, hourglass 형상 모두 파단이 발생한 반면, compression 하중이 작용하는 경우는 모두 파단이 발생하지 않았다. Shear와 bending 하중에 compression이 각각 결합될 경우, 응력삼축비가 0보다 작은 값으로 유지되어 파단이 억제되었다. 또한 변형에 취약한 요소의 Lagrangian-Green 변형률 텐서를 이용해 비교한 결과, 동일한 하중 조건이라도 솔더볼의 형상에 따라 변형의 양상에 유의미한 차이가 있음을 확인하였다.

P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질 (Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells)

  • 이선민;김석순
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.100-106
    • /
    • 2024
  • NiO와 페로브스카이트 사이의 전하 이동과 계면특성을 개선하기 위해, 솔-젤로 제조된 NiO를 [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz)으로 개질한다. 2PACz의 인산기(head group)는 NiO 표면의 수산화기(-OH)와 응축 반응을 통해 결합되며, 더 깊은 가전자대가 형성되면서 페로브스카이트 층의 가전자대와 에너지밴드가 더 잘 일치하게 되어 생성된 전하의 재결합이 억제되고 에너지 손실이 감소하게 된다. 더불어, 페로브스카이트의 표면 및 페로브스카이트/정공 전달층 계면에 핀홀이 없는 고질의 페로브스카이트 필름이 형성된다. 결과적으로, 13.69%의 효율을 나타내는 NiO 기반 소자와 비교했을 때, 최적의 2PACz으로 개질된 NiO 기반 소자는 17.08%의 높은 효율을 보여주며, 공기 조건에서 더 뛰어난 안정성을 보여준다.

무붕산 알칼리 냉각재 온도 증가에 따른 Type 630 스테인리스강의 부식특성 평가 연구 (A Study on Accelerated Corrosion Rate of Stainless Steel Type 630 with Increasing Temperature of B-free Alkaline Coolant)

  • 박정수;임상엽;전순혁;김주성;오정목;심희상
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.49-55
    • /
    • 2024
  • Stainless 630 (or 17-4PH) is a precipitation-hardening martensitic stainless steel that has excellent mechanical properties and corrosion resistance. These characteristics make the STS630 to be used as a consisting material for various components such as spider, pin, spring, and spring retainer, of the control rod drive mechanism (CRDM) in pressurized water reactors (PWRs). In general, it is well known that the oxide layer of stainless steel consists of a duplex layer, a compact inner layer of FeCr2O4 spinel, and a coarse-grained outer layer of Fe3O4 spinel in PWR primary coolant condition. However, the characteristics of the oxide layer can be sensitively influenced by various water chemistry conditions such as temperature, dissolved oxygen, dissolved hydrogen, pH, pH adjuster type, and exposure time. In this work, we investigate the corrosion properties of the STS630 as a function of coolant temperature in an NH3 alkaline solution for its boron-free application in a small modular reactor, to confirm the feasibility for usage as a boron-free SMR structural material. As a result, oxide layer of corroded STS630 is consist of double-layer oxides consisting of a Cr-rich dense inner oxide and a Fe-rich polyhedral outer particles like as that in commercial PWR primary coolant. The corrosion rate of STS630 increases with increase in test time and temperature and the corrosion rate-time model equation was developed based on experimental data. Overall, it is expected that the results in this study provides useful data for the corrosion behavior of STS630 in alkaline environments, contributing to the development of selecting suitable materials for SMRs.

피스톤 링 실 끝단을 갖는 스퀴즈 필름 댐퍼의 감쇠 계수 측정 (Measurement of Damping Coefficients of a Squeeze Film Damper with Piston Ring Seal Ends)

  • 김남규;송영채;김태호;홍정기;강경대
    • Tribology and Lubricants
    • /
    • 제40권2호
    • /
    • pp.54-60
    • /
    • 2024
  • This study experimentally identifies the effects of end shape, clearance, total damper length, journal eccentricity ratio, oil supply pressure, and oil flow rate on the damping coefficient of a squeeze film damper (SFD) with piston ring seal ends and a central groove. The SFD is composed of a lubricating fluid flowing between the outer race of a rolling element bearing and cartridge, along with an anti-rotation pin to prevent the rotation of the outer race. The device provides additional viscous damping to a rotating system. Additionally, piston ring seals attached at both ends of the damper increase the damping coefficient of the rotating system by reducing oil leakage. Because these different design conditions affect the damping coefficient of an SFD, we perform experiments including different conditions. Tests show that the damping coefficient increases significantly in the SFD with piston ring seal ends compared with the SFD with open ends. The damping coefficient also increases with increasing total damper length and journal eccentricity ratio, and decreases with increasing clearance. Additionally, in contrast to the trend observed for the SFD with open ends, the damping coefficient for the SFD with piston ring seal ends increases with increasing supply pressure and flow rate as the frequency decreases but shows consistent results as the frequency increases.

탈착계류시스템 반잠수식 무어링 풀리의 구조강도평가법에 관한 연구 (A Study on the Strength Evaluation Method of Submersible Mooring Pulleys for Detachable Mooring Systems)

  • 이강수;박병재
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.91-102
    • /
    • 2024
  • Rapid progress is being made in foundational technology research and engineering for the construction of floating offshore wind farms. There is active development of technology for detachable mooring systems, which have strengths in addressing maintenance issues that arise in floating offshore wind farms and enhance their economic viability. Conventional detachable mooring systems use Kenter links inserted into the middle of mooring chains, which require excessive time for retrieval by Anchor Handling Tug Supply (AHTS) vessels during detachment operations. Moreover, these operations pose risks of link damage and accidents. Therefore, there is a demand for the development of a new concept of detachable mooring systems. The proposed detachable mooring system in this study simultaneously integrates a fairlead chain stoppers (FCS) and submersible mooring pulleys (SMP), which enables all operations to be conducted on the AHTS vessel without underwater tasks. This study detailed the design and safety evaluation of the SMP, a core component of the detachable mooring system, based on the minimum breaking load (MBL) of selected mooring lines according to the capacity of the floating platform. It referenced international codes (AISC Specification for Structural Steel Buildings D5, Pin-Connected Members) for design verification and performed finite element analysis to evaluate the strength of major components in installation and operation scenarios. Additionally, procedures and techniques for evaluating the structural strength of components under uncertain boundary conditions were proposed.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

압축공기를 사용한 사출성형품의 싱크마크 저감 및 가스 벤팅에 관한 연구 (Study on sink-mark reduction and gas venting of injection molded parts using compressed air)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제18권3호
    • /
    • pp.71-80
    • /
    • 2024
  • Sink marks are a common defect that occurs due to differences in shrinkage in areas with significant thickness variations in injection-molded parts. In this paper, we investigated the reduction of sink marks and the improvement of gas venting in injection molding processes using External Gas Injection (EGI). A mold was designed with considerations for EGI core pins, O-ring grooves to prevent gas leakage, and ejector-pin sealing. The sink marks were then examined through a series of experiments. When the delay time for injecting compressed air was set to 2.2 seconds, the depth of the sink marks was minimized. However, when the delay time was either too short or too long, the depth of the sink marks increased. There was almost no difference in the depth of the sink marks at discharge pressures of 30 and 50 bar of compressed air, but the sink marks were significantly reduced at a discharge pressure of 70 bar. Under the conditions of a 2.2-second delay time and a supply pressure of 70 bar, the smallest depth, 0.594 ㎛, was observed when the supply time was between 6 and 7 seconds. This represents a reduction of approximately 94% compared to the sink mark depth of 10.078 ㎛ observed with conventional injection molding. To verify the gas venting effect of compressed air injection, an experiment was conducted using non-dried PC. The silver streaks that appeared on the exterior of the molded part were completely eliminated when the air supply pressure was set to 20 bar. This indicates that by injecting compressed air into the mold cavity before injecting the resin, the appearance quality of the injection-molded part can be improved without the need to dry the resin in advance.