• Title/Summary/Keyword: Piloti-type building structures

Search Result 12, Processing Time 0.026 seconds

A Study on the Fire Risk of Urban type housing constructed by pilotis structures, -In the case of Uijeongbu fire- (필로티구조 도시형생활주택의 화재위험성에 관한 연구 -의정부사례를 바탕으로-)

  • Hwang, Eu-Cheong;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.50-51
    • /
    • 2017
  • The Urban-type building is an building that it relaxed the construction standard and subsidiary facility standard. The most of the urban-type buildings are pilotis, the main case of representing these building's fire risk is the Uijeongbu fire this study investigated to piloti urban type housing risk on the basis of Uijeongbu fire, and we checked structural problem that unable to escape from the rooftop inside the piloti. also, there was confirmed limit to the evacuation of the occupants because the smoke was rapidly transferred to the top layer through inside the electric duct. and when we analyzed smoke flow use of Fire simulation, it was confirmed Available Safety Egress Time that is four minutes of CO.

  • PDF

Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads (지진하중이 작용하는 RC 필로티 건축물의 동적해석)

  • Kim, Ju-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Piloti-type buildings in Korea are usually composed of lower frames and upper shear wall structures. Piloti-type buildings have been seriously damaged during earthquakes because of the construction of soft and weak stories. Piloti-type buildings with edge cores are two-way unsymmetric planes. This paper analyzed and obtained the dynamic response for structures modeled using a multistory two-way asymmetric system. The numerical results, obtained using the Newmark-β method, show the time-history responses and trends of maximum displacements and shear forces. The purpose of this study is to evaluate the effect of reinforcement on dynamic response when a shear wall or brace is reinforced in the corner opposite the piloti.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Analysis of Peak Wind Pressure Coefficients of Penetration Type and End Type Pilotis (관통형과 단부형 필로티 천장부의 피크풍압계수 특성 분석)

  • You, Jang-Youl;Kim, Geun-Ho;Chae, Myung-Jin;Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • Various pilotis are installed in the lower part of high rise buildings. Strong winds can generate sudden airflow around the pilotis, which can cause unexpected internal airflow changes and may cause damage to the exterior of the piloti ceiling. The present study investigates the characteristics of peak wind pressure coefficient for the design of piloti ceiling exteriors by conducting wind pressure tests on high rise buildings equipped with penetration-type and end-type pilotis in urban and suburban areas. The minimum peak wind pressure coefficient for penetration-type piloti ceilings ranges from -2.0 to -3.3. Minimum peak wind pressure coefficient in urban areas was 30% larger than in suburban areas. In end-type piloti ceilings, maximum peak wind-pressure coefficient ranges from 0.5 to 1.9, and minimum peak wind-pressure coefficient ranges from -1.3 to -3.6. With changes in building height, peak wind pressure coefficient decreases as the aspect ratio increases. Peak wind-pressure coefficient increases with taller pilotis. On the other hand, when piloti height decreases, the absolute value of the minimum peak wind pressure coefficient increases.

Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type (중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.60-67
    • /
    • 2021
  • According to the 「Guidelines of Structural Design for Piloti Building」 of the Ministry of Land, Infrastructure and Transport (2018), the natural period of middle and low rise building of upper-walled lower frame type, such as the domestic multiplex house in piloti style, is suggested for safety to apply the existing code formula of the wall structure. However, the current code formula of the wall structure was provided based on actual measurement of high-rise wall-type structures that mainly exhibit bending behavior. So it is considered that it is not suitable for a piloti-type house with four stories or less, where the wall behaves in shear. See also Park et al. (2000) confirmed that the effect of the lower frame part is greater than that of the upper wall part in the natural period of complex structures with 10 or more floors through analytical studies. Therefore, in this study, in order to examine the effect of the lower frame on the natural period of the middle and low-rise piloti structure, the estimation of natural period by the finite element analysis, approximation formula and ccurrent code formula was performed for the target structures with the shear and flexural stiffness of the upper wall and the shear stiffness of the lower frame as variables. As result, it was found that the change in the shear stiffness of the lower frame had a greater effect on the natural period of the whole building than the change in the bending or shear stiffness of the upper wall.

A Study on Damage State Criteria based on Capacity Spectrum of Piloti-type RC Shear Wall Structures (필로티형 콘크리트 전단벽 구조물의 능력스펙트럼기반 손상도 기준에 대한 연구)

  • Hwang, Ji-Hyun;Park, Ki-Tae;Park, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5199-5205
    • /
    • 2013
  • Despite the increasing incidence of earthquakes in recent years, many of the existing buildings don't have appropriate seismic performance due to the deterioration or structural characteristics. In particular, a piloti-type RC shear wall structure, which is one of the building types in Korea, is highly vulnerable to earthquakes due to a great lack of shear function that can resist lateral force caused by the earthquake since the first floor is mostly soft story, and it is classified as weak story. In this regard, a study on the damage state criterion for the piloti-type RC shear wall structures was carried out. The capacity spectrum was calculated through the structural analysis by selecting typical type of buildings of shear wall systems, and damage state criterion was defined based on the shape of the capacity spectrum.

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames (1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험)

  • 이한선;고동우;권기현;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

A Study on the Analysis of Fire Risk and Field Survey for FilottI Structures (필로티 구조물의 화재위험성 분석 및 현장조사에 관한 연구)

  • Han, Ji-Woo;Lee, Byeong-heun;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.45-46
    • /
    • 2018
  • The fire at the pilotis parking lot shows the fire propagation paths that are propagated to the ceiling materials and insulation materials and propagated through the external walls. In addition, there is a high risk of fire caused by vehicles with high combustion loads spreading throughout the parking lot. In particular, the omission of the ceiling materials at the parking lot in recent fire cases has contributed to the spread of the fire. In this study, the combustion performance of the ceiling materials between the insulation material and the vehicle is considered to prevent fire from spreading. Based on field research, the type of ceiling material used in the piloti structure showed that SMC ceiling materials have the highest percentage. Combustion performance test (KS F ISO 5660-1) was carried out on the SMC ceiling materials and the AL ceiling materials to review the fire safety of the ceiling finish based on the field investigation. The results of the test showed that the SMC ceiling materials has a THR 28.973[MJ/㎡] and peek HRR 273.93 [kW/㎡], while the AL ceiling material has a THR 0.584[MJ/㎡] and peek HRR 15.215[kW/㎡].

  • PDF