• Title/Summary/Keyword: Piloti building

Search Result 47, Processing Time 0.028 seconds

Seismic Retrofit Method for Piloti Buildings According to Type of Core (코어의 유형에 따른 필로티형 건축물의 내진보강방안)

  • Kim, Minjun
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.83-102
    • /
    • 2022
  • After the earthquake in South Korea (Gyeongju and Pohang), interest in securing the seismic performance of piloti buildings was increasing. In this paper, a study was conducted to propose a seismic retrofit method for piloti building of LH. The proposed seismic retrofit method considers the priority of seismic retrofit and the type of core. To verify the effectiveness of the proposed seismic retrofit method, computational analysis was performed according to the type of core. As a result, it was confirmed that the seismic performance was improved when the proposed seismic retrofit method was used.

A Study on the Fire Risk of Urban type housing constructed by pilotis structures, -In the case of Uijeongbu fire- (필로티구조 도시형생활주택의 화재위험성에 관한 연구 -의정부사례를 바탕으로-)

  • Hwang, Eu-Cheong;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.50-51
    • /
    • 2017
  • The Urban-type building is an building that it relaxed the construction standard and subsidiary facility standard. The most of the urban-type buildings are pilotis, the main case of representing these building's fire risk is the Uijeongbu fire this study investigated to piloti urban type housing risk on the basis of Uijeongbu fire, and we checked structural problem that unable to escape from the rooftop inside the piloti. also, there was confirmed limit to the evacuation of the occupants because the smoke was rapidly transferred to the top layer through inside the electric duct. and when we analyzed smoke flow use of Fire simulation, it was confirmed Available Safety Egress Time that is four minutes of CO.

  • PDF

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis (필로티형 저층 내력벽주택의 내진설계 고려사항)

  • Lee, Seung Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.

Seismic Fragility Function for Existing Low-Rise Piloti-Type Buildings Reflecting Damage From Pohang Earthquake (포항지진의 피해 결과를 반영한 기존 저층 필로티 건물의 지진취약도함수)

  • Kim, Jinyoung;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.251-259
    • /
    • 2021
  • Current seismic fragility functions for buildings were developed by defining damage state threshold based on story drift concerning foreign references and using the capacity spectrum method based on spectral displacement. In this study, insufficient details and dependence on the core location of piloti-type buildings were not reflected in the fragility function because it was developed before the Pohang earthquake. In order to develop an improved one for piloti-type buildings, several types of core were selected, damage state threshold was determined based on the capacity of structural members, and three-dimensional analyses were utilized. As a result, seismic fragility functions based on spectral acceleration were developed for various core locations and different shear strengths of the column stirrup. The fragility of piloti-type buildings significantly varied according to core location, an additional single wall, and whether the contribution of column stirrup was included or not. To estimate fragility more reasonably, it is necessary to prepare the parameters to reflect actual state well.

Effect of Stirrup Spacing of Columns and an Additional Wall other than Core Walls on the Seismic Performance of Piloti-type Buildings (코어 외 추가 벽체와 기둥 띠철근 간격이 필로티 건물의 내진성능에 미치는 영향)

  • Lee, Soo Jeong;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.171-181
    • /
    • 2024
  • For low-rise piloti-type buildings that suffered significant damage in the Pohang earthquake, the seismic performance of those designed by codes issued before and after the earthquake has been recently revised. This study started with the expectation that many of the requirements presented in the current codes may be excessive, and among them, the spacing of column stirrup could be relaxed. In particular, the recently revised design code of concrete structures for buildings, KDS 41 20 00, suggests that the column stirrup spacing is 1/2 of the minimum cross-sectional size or 200 mm, which is strengthened compared to KBC 2016, but relaxed than the current KDS, 41 17 00, which is 1/4 of the minimum size or 150 mm. As a result of the study, it was found that the target performance level was sufficiently satisfied by following the current standards and that it could be satisfied even if the relaxed spacing was followed. Therefore, the strict column stirrup spacing of KDS 41 17 00 could be relaxed if a wall other than core walls is recommended in the current guideline for the structural design of piloti-type buildings.

Seismic Performance of Reinforced Concrete Shear Wall Buildings with Piloti (필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능)

  • Kwon Young-Wung;Kim Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.587-594
    • /
    • 2005
  • The purpose of seismic design is to ensure the serviceability of buildings against earthquake, which might be occurred during the service life of buildings, and to minimize the loss of life by preventing their failure under strong earthquake. The lack resistance of walls resulting from a tendency toward high-rise apartment buildings with shear walls and use of piloti would lead to a concentration of inelastic behaviors in their weak story. In this study, the seismic performance of reinforced concrete shear wall buildings haying piloti was analyzed by using the evaluation techniques which was proposed by FEMA 273 and ATC-40. The results from comparison with these two techniques are summarized as follows.; The results of elastic analysis method for seismic performance evaluation show that the effect of piloti and building height decrease performance index. In case of shear wall building, the state of insufficient shear stress governs their overall performance and it becomes evident in the case of the buildings with more than 25 stories. For the buildings of piloti, the change of mass, weak story, as well as insufficient shear stress, decrease the performance index rapidly compared with the performance index of the buildings without piloti. The results, obtained from the nonlinear static analysis using capacity spectrum method, indicate that the performance Point increases for the structure having Piloti and high story. Also, deformation limits of buildings satisfy the allowable criteria at the life safety level, but the immediate occupancy level is exceeded in buildings which have more than 25 stories.

Seismic performance evaluation of piloti-type low-rise RC apartment building (저층 RC 필로티형 집합 주택의 내진 성능 평가)

  • Lee, Han-Seon;Lee, Jeong-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.253-256
    • /
    • 2008
  • The objective of this study is to evaluate the seismic weakness of existing nonseismic low-rise piloti-type apartment buildings which have the irregularities of weak story, soft story, and torsion simultaneously. A prototype 4-story RC building was selected, analyzed using linear dynamic procedure and finally evaluated according to the acceptance criteria of FEM356. This building satisfies the criteria.

  • PDF

Structural damage potentials and design implications of 2016 Gyeongju and 2017 Pohang earthquakes in Korea

  • Lee, Cheol-Ho;Park, Ji-Hun;Kim, Sung-Yong;Kim, Dong-Kwan;Jun, Su-Chan
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • This paper presents a comparative study of the damage potentials for the 2016 Gyeongju and 2017 Pohang earthquakes in Korea. Plausible technical explanations are provided for the more severe damage observed in the 2017 Pohang earthquake in spite of its relatively weaker magnitude and intensity measures based on the response analysis of elastic and inelastic single-degree-of-freedom systems for the recorded ground motions. In addition, a detailed case study was conducted for a fatally damaged piloti building with an eccentric shear wall core based on nonlinear dynamic analysis using the input ground motions modified for the building site.

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.