• Title/Summary/Keyword: Pilot scale system

Search Result 357, Processing Time 0.025 seconds

Feasibility Study of Underground LNG Storage System in Rock Cavern (LNG 지하공동 비축시스템의 타당성분석)

  • Chung, So-Keul;Han, Kong-Chang;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.296-306
    • /
    • 2006
  • It is difficult to solve problems regarding the adjustment on demand and supply of LNG due to seasonal variations of domestic demand of LNG, a discordance among import pattern and limits of storage facilities and so on. Also, there may be instability in LNG supply due to chances of accidents at LNG producing areas. Therefore, it is very important to secure large LNG storage facilities and to stabilize LNG supply management on a long term basis. The objective of this study is to examine the real-scale applicability of a lined underground rock storage system, which have been verified by a successful operation of the Daejeon LNG pilot plant. The new technology has many advantages of better economy, safety and environment protection, for above-ground and in-ground storage systems. The results of this study may promote the first ever real scale underground LNG storage system in a rock cavern.

Efficiency evaluation of MBR, A/O processes utilizing self-sufficient energy (에너지 자립형 MBR, A/O 공정의 효율 평가)

  • Lim, Setaek;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.305-314
    • /
    • 2014
  • A pilot plant (Q=5 $m^3/d$) study was implemented for small and medium sized personal wastewater treatment plant effluent to evaluate MBR and A/O processes utilizing self-sufficient energy composed of wind and solar energy. The removal efficiencies of BOD, SS, turbidity and color were sufficient for legal water quality standards for gray water. However, those of nitrogen and phosphorus could not meet legal regulations which suggested that further removal of those contaminants were needed for reuse of the treated water. Self-sufficient energy rate was 100 % for the pilot plant due to excessive design capacity. In this research, wind and solar energy system was applied considering geological characteristics, which significantly improved energy self-sufficiency. Substantial improvement on energy self-sufficiency can be obtained by optimized investment and operation at a full scale wastewater treatment plant.

반혐기성 가수분해/산 발효조에서의 음식폐기물 발효 균주 탐색

  • Kim, Jung-Gon;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.427-430
    • /
    • 2002
  • Pilot scale(2.5 ton) three-stage methane fermentation process was developed for the rapid production of methane from food wastes in our laboratory. Eleven strains responsible for the primary semianaerobic hydrolysis/acidogenic fermentation system were isolated and characterized. Among them, the number of gram positive bacteria was eight and that of gram negative bacteria was three. They were rod and showed positive reaction to catalase. The strain K5 was found to have the highest enzyme activities of amylase and protease.

  • PDF

Variation of Hydrological Characteristics of Soils Mixed with Industrial By-products by Pilot-Test (현장 Pilot실험을 통한 산업부산물 혼합토의 수리학적 특성 변화)

  • Yu, Chan;Yoon, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1655-1665
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF

Characteristics of Algae Occurrence on Environmental Changes (환경변화에 따른 조류 발생 변화)

  • Noh, Seongyu;Shin, Yuna;Choi, Heelak;Lee, Jaeyoon;Lee, Jaean;Rhew, Doughee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2015
  • Pilot scale system was designed to identify the growth and movement of algae, depending on environmental changes(retention time, nutrient concentration, etc) in Gangjeong-Goryeong Weir of the Nakdong River. Considering the stability of algal culture and easy observation of algal growth, pilot scale system was made of transparent acrylic material(3 sets of flexible cylindrical water tanks with 1 m diameter and 4 m height). Auxiliary equipments include light intercepter, water inflow device for different water depth and storage of reclaimed water. The retention time was 2 days(before construction of weir; treatment 1), 8 days(after construction of weir, 2013; treatment 2) and 30 days(2014; treatment 3). According to the water temperature of treatment 1 were similar by depth, treatment 3 showed a difference between the surface(0 m) and bottom(4 m) more than $3^{\circ}C$. DO, pH showed relatively high in the surface than the bottom. Nutrients showed eutrophic condition in all experiments. The Chlrophyll-a concentration of the treatment 1 showed a relatively lower value than the Chlrophyll-a concentration of the treatment 2 and 3. Therefore, the retention time was considered to influence the growth of phytoplankton.

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

Evaluation of Operating Parameters of Reject Water Treatment System with Pilot-scale Biofilm Nitritation Plant at Field Condition (반류수처리를 위한 현장 pilot plant 생물막 아질산화 반응조에서 운전인자 평가)

  • Han, Jinhee;Kwon, Min;Han, Jonghun;Yun, Zuwhan;Nam, Haiuk;Ko, Joohyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.636-641
    • /
    • 2007
  • A pilot-scale biofilm nitiritation reactor was operated with the reject water from a large wastewater treatment plant. The effects of various operating parameters including pH, temperature, dissolved oxygen, solids and organic concentrations were examined. A stable nitritation was achieved at operating pH range of 7.3 to 8.8 with an alkalinity addition. Higher operating temperature of $35{\pm}0.7^{\circ}C$ achieved more stable nitritation compared to $30{\pm}0.2^{\circ}C$. It has been noticed that nitrite accumulation maintained with DO, solids and organic concentrations range of 0.8 to 3.9 mg/L, 3,400 to 11,000 mg/L, and 86 to 572 mg/L, respectively. It seems that the accumulation of nitrite was caused by both the inhibition of $NO_2{^-}$ oxidizers due to free ammonia and the maintenance of the high operating temperature of $35^{\circ}C$ which promote to accumulate the $NH_4{^+}$ oxidizers in the reactor. According to microbial community analysis of fluorescence in situ hybridization and INT-Dehydrogenase measurements, more nitrifiers were presented in attached form compared to suspended growth.

Combustion and Pyrolysis Characteristics of Solid Wastes in a 30 kg/hr Capacity Pyrolysis Melting Incinerator (30 kg/hr 급 열분해 용융 소각로에서의 폐기물 열분해/연소/용융 특성 연구)

  • Yu, Tae-U;Kim, Bong-Geun;Yang, Won;Jeon, Keum-Ha;Shin, Dong-Hoon;Park, Sang-Uk;Im, Seong-Jin;Kim, Dae-Seong;Lee, Jin-Ho;Hwang, Jeong-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.172-180
    • /
    • 2006
  • A novel pyrolysis-melting incineration system of reduced scale (30 kg/hr) is and constructed in Korea Institute of Industrial Technology. The incineration process is composed of three parts: pyrolysis, gas combustion and ash melting processes. For each unit process, experimental and numerical approaches including reduced-scale cold/hot flow tests have been conducted to find optimal design and operating conditions. This paper presents major results of these approaches with brief descriptions on the pilot-scale incinerator (200 kg/hr) under construction and future research works.

  • PDF

A Study on Efficient Evidence-Based Training(EBT) Application Method (Focusing on Approved Training Organization for Pilot) (효율적인 증거기반훈련(EBT) 적용방안에 관한 연구 (조종사 전문교육기관을 중심으로))

  • Hak-keun Kim;Kyu-wang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Evidence-based training (EBT) improves a pilot's competency and confidence based on the data(Evidence) from actual aircraft accidents, incidents, operations, and training for safe operation in the fast-paced and large-scale air transportation field. It is a training/assessment program that strengthens resilience for problem solving. As a way to apply this evidence-based training(EBT) to the educational system of ATO and to resolve the problems, I propose 3 improvement plans. They are evaluation criteria that apply the core competencies of EBT to the educational evaluation system, the way to improve the system for standardization of practical test examiners and instructors and also the ways to use Flight Simulation Training Devices(FSTD).

Treatment of Nutrients Using the Upflow Vegetated Filter (상향류식 수초여과지를 이용한 영양염류처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1287-1292
    • /
    • 2006
  • Constructed wetlands are well known as highly efficient system to treat wastewater from different sources. Among the constructed wetlands, upflow types of constructed wetlands have become a common selection of wastewater during the last decade. We conducted a pilot scale study at peen house on treating potential of nutrients by upflow vegetated filter(UVF) pilot wetland which was combined with hydrodynamic separator and used the cattail plant(Typha angustifolia), and operated with artificial nutrients influent. This study evaluate the performances of upflow vegetated fille, in removal of nutrients. The objectives of this study were two-fold: (i) to evaluate the nutrients removal performance of pilot-scale upflow vegetated filter, filled with a mixture of perlite and soil media and planted with cattails and (ii) to design of scale-up upflow vegetated filter using Froude number. Results indicated that, under the condition of the ranges of hydraulic surface load rate were $22.7{\pm}9.6\;m^3/m^2/day$, the average removal of $COD_{Mn}$, and TN, TP were 57.5%, 40.0% and 41.5%, respectively. Computational fluid dynamics, FLUENT 6.0 program was used to predict the distribution of velocity in UVF and hydrodynamic separator. Full scale UVF was designed using the Froude number scale-up method that was assumed geomertic similarity between model and prototype. Result shows that the UVF with 3 m diameter has capacity of design sewage flowrate 75 $m^3/day$.