• Title/Summary/Keyword: Pilot flight time limitation

Search Result 6, Processing Time 0.026 seconds

A Study on the Optimal Flight Time According to the Amount of Fatigue (피로누적에 따른 최적 비행시간 산출에 관한 연구)

  • 이승훈;윤봉수
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.1
    • /
    • pp.41-57
    • /
    • 1998
  • Since the aircraft has a property of moving in the three-dimensional space, it may cause personally and financially critical damage in the case of an accident. Among the causes of aircraft accident, human factor has occupied about 70% of all accidents. Specially, fatigue among human's problems has been studied earlier than any other factor. Fatigue has been the cause of 75% of accidents that are related to human factor. So many studies have been conducted. But the direction of these studies mainly attach importance to the sleep loss and circadian rhythm. Limitation for flight time of ICAO is 8 hours per day, civil airlines in domestic line also adopt the limitation. But this rule is not based on human's performance but compromise between labor and management. The long-haul flight brings about a mental block to pilot. This mental block decreases performance of pilot and loses a lot of important information. So this may cause many accidents. This paper is to offer optimal flight time according to the amount of fatigue due to increasing flight time. The optimal flight time is searched through the field experiment. The experiment has adopted two methods. One is to examine pilot's objective fatigue accumulation rate through the critical fusion frequency, and another is to investigate pilot's subjective fatigue feeling through the fatigue subjective symptoms investigation table.

  • PDF

A Study of Plans to Improve the Aviation Regulations about Pilot Flight (Duty) Time Limitations (Based on FRMS) (조종사비행(근무)시간기준에 대한 항공규정개선방안 연구 (FRMS를 중심으로))

  • Lee, Ki-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Approximately 70% of aviation accidents in the world are caused by human factors of pilots and 15-20% of these accidents are known to be caused by pilot fatigue. Recently ICAO established new standards of FRMS for aircrew. The US and the EU have introduced FRMS and established and operated new aviation regulation systems for pilot flight(duty) time limitations. On the other hand, Korea has not yet introduced FRMS. This study reviewed ICAO's standards of FRMS and analyzed the aviation regulations of the US and the EU. As a result of this study, it showed that Korea also needed to introduce FRMS. This study reasoned out plans to improve Korean aviation regulations about pilot flight time limitations based on international standards.

A Study on the Flight-time Limitation at each Mission in Whole-Body Vibration Exposure of UH-1 Pilot (UH-1H 조종사의 전신진동 노출에 따른 임무별 비행시간 한계에 관한 연구)

  • 송근식;정완섭;이달호
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.353-358
    • /
    • 1998
  • Vibrations exposured to human whole-body are transmitted through the contact area of a human body, such as feet, hip and back directly in contact with vibrating surface. they apparently leads to the decrease of human comfort, the reduction of working efficiency or normal activities, and, furthermore, causes the loss of health and safety. In this study, UH-1 vibration has been measured to produce the flight-time limitation at each mission Results of this study show that the most significant peaks appear at a main rotor blade-passage frequency and that the vibration level in ground is higher than that in airborne In addition, it is shown that the most affective aspect for the flight-time limitation is ground vibration level

  • PDF

A Study on the Precursors of Aviation Turbulence via QAR Data Analysis (QAR 데이터 분석을 통한 항공난류 조기 인지 가능성 연구)

  • Kim, In Gyu;Chang, Jo Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.36-42
    • /
    • 2018
  • Although continuous passenger injuries and physical damages are repeated due to the unexpected aviation turbulence encountered during operations, there is still exist the limitation for preventing recurrence of similar events because the lack of real-time information and delay in technological developments regarding various operating conditions and variable weather phenomena. The purpose of this study is to compare and analyze the meteorological data of the aviation turbulence occurred and actual flight data extracted from the Quick Access Recorder(QAR) to provide some precursors that the pilot can identify aviation turbulence early by referring thru the flight instrumentation indications. The case applied for this study was recent event, a scheduled flight from Incheon Airport, Korea to Narita Airport, Japan that suddenly encountered turbulence at an altitude of approximately 14,000 feet during approach. According to the Korea Meteorological Administration(KMA)'s Regional Data Assessment and Prediction System(RDAPS) data, it was observed that the strong amount of vorticity in the rear area of jet stream, which existed near Mount Fuji at that time. The QAR data analysis shows significant changes in the aircraft's parameters such as Pitch and Roll angle, Static Air Temperature(SAT), and wind speed and direction in tens of seconds to minutes before encounter the turbulence. If the accumulate reliability of the data in addition and verification of various parameters with continuous analysis of additional cases, it can be the precursors for the pilot's effective and pre-emptive action and conservative prevention measures against aviation turbulence to reduce subsequent passenger injuries in the aviation operations.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.

Evolution of Aviation Safety Regulations to cope with the concept of data-driven rulemaking - Safety Management System & Fatigue Risk Management System

  • Lee, Gun-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.345-366
    • /
    • 2018
  • Article 37 of the International Convention on Civil Aviation requires that rules should be adopted to keep in compliance with international standards and recommended practices established by ICAO. As SARPs are revised annually, each ICAO Member State needs to reflect the new content in its national aviation Acts in a timely manner. In recent years, data-driven international standards have been developed because of the important roles of aviation safety data and information-based legislation in accident prevention based on human factors. The Safety Management System and crew Fatigue Risk Management Systems were reviewed as examples of the result of data-driven rulemaking. The safety management system was adopted in 2013 with the introduction of Annex 19 and Chapter 5 of the relevant manual describes safety data collection and analysis systems. Through analysis of safety data and information, decision makers can make informed data-driven decisions. The Republic of Korea introduced Safety Management System in accordance with Article 58 of the Aviation Safety Act for all airlines, maintenance companies, and airport corporations. To support the SMS, both mandatory reporting and voluntary safety reporting systems need to be in place. Up until now, the standard of administrative penal dispensation for violations of the safety management system has been very weak. Various regulations have been developed and implemented in the United States and Europe for the proper legislation of the safety management system. In the wake of the crash of the Colgan aircraft, the US Aviation Safety Committee recommended the US Federal Aviation Administration to establish a system that can identify and manage pilot fatigue hazards. In 2010, a notice of proposed rulemaking was issued by the Federal Aviation Administration and in 2011, the final rule was passed. The legislation was applied to help differentiate risk based on flight according to factors such as the pilot's duty starting time, the availability of the auxiliary crew, and the class of the rest facility. Numerous amounts data and information were analyzed during the rulemaking process, and reflected in the resultant regulations. A cost-benefit analysis, based on the data of the previous 10 year period, was conducted before the final legislation was reached and it was concluded that the cost benefits are positive. The Republic of Korea also currently has a clause on aviation safety legislation related to crew fatigue risk, where an airline can choose either to conform to the traditional flight time limitation standard or fatigue risk management system. In the United States, specifically for the purpose of data-driven rulemaking, the Airline Rulemaking Committee was formed, and operates in this capacity. Considering the advantageous results of the ARC in the US, and the D4S in Europe, this is a system that should definitely be introduced in Korea as well. A cost-benefit analysis is necessary, and can serve to strengthen the resulting legislation. In order to improve the effectiveness of data-based legislation, it is necessary to have reinforcement of experts and through them prepare a more detailed checklist of relevant variables.