• 제목/요약/키워드: Pillar shape

검색결과 75건 처리시간 0.035초

스크린 인쇄 공정 변수에 따른 진공유리용 필러의 단면형상 기울기 분석 (Analysis of Cross-Section Shape Slope of Pillar for Vacuum Glazing according to the Screen Printing Parameters)

  • 김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.43-48
    • /
    • 2012
  • The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc. for forming the high precision micro-pattern. Also A number of studies of screen printing method has been conducted as the method for the cost down through the improvement of productivity. Because of being the dot printing method of the cylindrical shape not being the line printing method like the existing PDP barrier rib and phosphor, the pillar arrays using the screen printing method is deposited in the hemispherical type not being cylindrical shape in the existing printing process conditions. In this paper, the parameters were set on the screen printing device in order to deposit the cross-sectional shape with the cone or trapezoid shape of the pillar in depositing the pillars used the screen printing device for vacuum glazing. The cross-sectional shape slope of the pillar according to the parameters was measured. And analysis the effect of the screen printing process conditions on the cross-sectional shape slope of pillars based upon the result of being measured. The processing conditions were drawn to minimize the cross-sectional shape slope of pillar.

단순 측면충돌해석에 의한 센터필러의 최적설계 (Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis)

  • 배기현;송정한;허훈;김세호
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

버스 윈도우 필라 부재의 형상 최적 설계기술 개발 (Development of Optimum Design Technique for Bus Window Pillar Member)

  • 김명한;김대성;임석현;서명원;배동호
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.156-164
    • /
    • 1999
  • The body structure of a bus is generally assembled by using various spot welded box sectional members. The shape of window pillar joint is ordinarily built up by T-type member. It has been shown that T-type member has problems like high stress concentrations, low fatigue strength and low structural rigidity. In this study, to solve these problems a new approach to optimize the design of the bus window pillar joint was tried by FEM analysis and experiments. To describe the shape of the gusset connecting the vertical and horizontal members of the T-type window pillar joint B-spline curve was adopted and this curve was optimized . It was found that the new model developed could effectively improve fatigue durability an structural rigidity.

  • PDF

다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석 (The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings)

  • 민형기;임한욱
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF

단순유한요소모델을 이용한 차체필라 형상최적설계 (Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model)

  • 이상범
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Theoretical Consideration on Influences of Cavity or Pillar Shape on Band Structures of Silicon-Based Photonic Crystals

  • Ogawa, Yoshifumi;Tamura, Issei;Omura, Yasuhisa;Iida, Yukio
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권1호
    • /
    • pp.56-65
    • /
    • 2007
  • This paper describes physical meanings of various influences of cavity (or pillar) shape and filling factor of dielectric material on band structures in two-dimensional photonic crystals. Influences of circular and rectangular cross-sections of cavity (or pillar) arrays on photonic band structures are considered theoretically, and significant aspects of square and triangular lattices are compared. It is shown that both averaged dielectric constant of the photonic crystal and distribution profile of photon energy play important roles in designing optical properties. For the triangular lattice, especially, it is shown that cavity array with a rectangular cross-section breaks the band structure symmetry. So, we discuss this point from the band structure and address optical properties of lattice with a circular cross-section cavity.

실험계획법을 이용한 진공유리 Pillar 재료의 혼합비율 최적화 (Optimization of Ingredients for Vacuum Glazing Pillar Using DOE)

  • 김재경;전의식
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1002-1007
    • /
    • 2012
  • Pillar의 제조 방법은 진공유리 및 반도체 디스플레이 분야에서 사용되는 핵심공정 중 하나이다. Pillar는 스크린 인쇄 방식을 통하여 배치할 수 있으나 시료의 성분에 따라 메탈마스크의 패턴을 전부 통과하지 못하거나 점도에 따라 통과된 혼합물이 본래의 형상을 유지 못하는 경우가 발생한다. 본 연구에서는 알루미나와 실리카 기반의 무기화합물을 이용하여 스크린 인쇄를 통해 pillar를 배치하였다. 실험계획법의 하나인 혼합물 설계를 이용함으로써 실험횟수를 줄이고 진공유리 pillar의 조성을 설계할 수 있는 방법을 제시하고자 한다.

차량 필러부품 프레스 금형설계를 위한 금형보정이력 정보 데이터베이스 구축 (Construction of information database with tool compensation histories for the tool design of a pillar part)

  • 김세호
    • 한국산업정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.43-50
    • /
    • 2012
  • 본 논문에서는 차량용 센터필러 부품의 성형공정에서 발생하는 스프링백 문제를 해결하기 위한 일환으로 기존 부품의 금형보정이력 정보를 체계적으로 데이터베이스화하였다. 기존 부품의 경우 과도한 스프링백 발생에 의한 형상정밀도 불량을 해결하기 위하여 3차의 금형 보정을 현장기술자의 작업에 의하여 수행하였으나, 보정값이 정량화되어 있지 못한 문제가 있었다. 본 논문에서는 기존 금형 보정과정의 결과를 유한요소해석을 통하여 정량적으로 분석하고 보정이 의도대로 이루어졌는지를 평가하는 데이터베이스를 구축하였다. 구축된 데이터베이스 정보를 활용하여 유사부품의 금형설계에 활용하였으며, 결과적으로 보정횟수를 감소시키고도 제품을 성공적으로 성형할 수 있었다.

고강도강 Reinforce Center Pillar의 스프링백 해석 (Application of Springback Analysis in the Development of a Reinforce Center Pillar Stamping Die)

  • 김기태;김승현;유국호;이춘우;심현보
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.297-302
    • /
    • 2014
  • The current paper introduces work that was conducted during the development of a stamping die for a reinforce center pillar made from high strength steel. In the current study, the Bauschinger effect on the springback analysis was studied by comparing simulation results with real panels, which are currently in production. For a complicated part shape, quantitative measurements of the deformed shape are not easy in general to obtain. An adjustment procedure of the shape data for some chosen sections has been suggested to improve the accuracy of the quantitative measurements. The results show that the kinematic hardening model provides more accurate results.