DOI QR코드

DOI QR Code

Theoretical Consideration on Influences of Cavity or Pillar Shape on Band Structures of Silicon-Based Photonic Crystals

  • Published : 2007.03.31

Abstract

This paper describes physical meanings of various influences of cavity (or pillar) shape and filling factor of dielectric material on band structures in two-dimensional photonic crystals. Influences of circular and rectangular cross-sections of cavity (or pillar) arrays on photonic band structures are considered theoretically, and significant aspects of square and triangular lattices are compared. It is shown that both averaged dielectric constant of the photonic crystal and distribution profile of photon energy play important roles in designing optical properties. For the triangular lattice, especially, it is shown that cavity array with a rectangular cross-section breaks the band structure symmetry. So, we discuss this point from the band structure and address optical properties of lattice with a circular cross-section cavity.

Keywords

References

  1. R. A. Soref and J. P. Lorenzo, 'All-Silicon Active and Passive Guided-Wave Components for ${\lambda}$ =1.3 and $1.6{\mu}{m}$,' IEEE J. Quantum Electronics, Vol. QE-22, no. 6, pp. 873-879, 1986 https://doi.org/10.1109/JQE.1986.1073057
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, 'Photnic Crystals -Molding the Flow of Light,' Princeton University Press, Princeton, NJ, 1995
  3. K. Sakoda, 'Optical Properties of Photonic crystals', Springer, New York, 2001
  4. E. Yablonovitch, 'Inhibited Spontaneous Emission in Solid-State Physics and Electronics,' Phys. Rev. Lett., Vol. 58, pp. 2059-2062, 1987 https://doi.org/10.1103/PhysRevLett.58.2059
  5. A Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, 'High Transmission Through Sharp Bends in Photonic Crystral Waveguides,' Phys. Rev. Lett., Vol. 77, pp. 3787-3790, 1996 https://doi.org/10.1103/PhysRevLett.77.3787
  6. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith and E. P. Ippen, 'Photonic-Bandgap Microcavities in Optical Waveguides,' Nature, Vol. 390, pp. 143-145, 1997 https://doi.org/10.1038/36514
  7. T. Kinoshita, A. Shimizu, Y. Iida and Y. Omura,'Design Senisitivity in Quasi-One-Dimensional Silicon-Based Photonic Crystalline Wavegnides,' J. Semicond. Tech. and Sci., Vol. 3, pp. 55-61, 2003
  8. A. Polman, P. Wiltzius, T.A.Birks, E.Chow, V.L.Colvin, J.G.Fleming, J.C.Knight, S.Lin, S.Noda, P.S.J.Russell, J.Schilling, W.L.vos, A.J.Turberfield, R.B.Wehrspohn, 'Materials Science Aspects of Photonic Crystals,' MRS BULLETIN, No.8, pp. 608-610, 2001
  9. X. Yu and S. Fan, 'Bends and Splitters for Self-Collimated Beams in Photonic Crystals,' Appl. Phys. Lett., Vol. 83, no. 16, pp. 3251-3253, 2003 https://doi.org/10.1063/1.1621736
  10. H. Kosada, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, 'Superprism Phenomena in Photonic Crystals,' Phys. Rev. B, Vol. 58, no. 16, pp. 10096-10099, 1998 https://doi.org/10.1103/PhysRevB.58.R10096
  11. C. Luo, S. G. Johnson, and J. D. Joannopoulos, 'Subwavelength Imaging in Photonic Crystals,' Phys. Rev. B, Vol. 68, pp. 045115-1-15, 2003 https://doi.org/10.1103/PhysRevB.68.045115
  12. A. I. Cabuz, E. Centeno, and D. Cassagne, 'Superprism Effect in Bidimensional Rectangular Photonic Crystals,' Appl. Phys. Lett., Vol. 84, no. 12, pp. 2031-2033, 2004 https://doi.org/10.1063/1.1688981
  13. N. Susa, 'Large Absolute and Polarization-Independent Photonic Band Gaps for various Lattice Structures and Rod Shapes,' J. Appl. Phys, Vol. 91, no. 6, pp. 3501-3510, 2002 https://doi.org/10.1063/1.1450022
  14. R. Wang, X. H. Wang, B. Y. Gu, and G. Z. Yang, 'Effects of Shapes and Orientations of Scatterers and Lattice Symmetries on The Photonic Band Gap in Two-Dimensional Photonic Crystals,' J. Appl. Phys, Vol. 90, no. 9, pp. 4307-4313, 2001 https://doi.org/10.1063/1.1406965
  15. C. Y. Hong, I. Drikis, S. Y. Yang, H. E. Horng, and H. C. Yang, 'Slab-Thickness Dependent Band Gap Size of Two-Dimensional Photonic Crystals with Triangnlar-Arrayed Dielectric or Magnetic Rods,' J. Appl. Phys, Vol. 94, no. 4, pp. 2188-2191, 2003 https://doi.org/10.1063/1.1595709
  16. Y. Akahane, T. Asano, B. S. Song, AND S. Noda, 'Investigation of High-Q Channel Drop Filters Using Donor-Type Defects in Two-Dimensional Photonic Crystal Slabs,' Appl. Phys. Lett., Vol. 83, no. 8, pp. 1512-1514, 2003 https://doi.org/10.1063/1.1604179
  17. L. L. Lin, Z. Y. Li, and K. M. Ho, 'Lattice Symmetry Applied in Transfer-Matrix Methods for Photonic Crystals,' J. Appl. Phys, Vol. 94, no. 2,pp.8ll-82l,2003 https://doi.org/10.1063/1.1587011
  18. R L. Chern, C. C. Chang, C. C. Chang, and R R. Hwang, 'Large Full Band Gaps for Photonic Crystals in Two Dimensions Computed by an Inverse Method with Multigrid Acceleration,' Phys. Rev. E, Vol. 68, pp. 026704-1-5, 2003 https://doi.org/10.1103/PhysRevE.68.026704
  19. J. M. Hickmann, D. Solli, C.F. Mccormick, R. Plambeck, and R.Y. Chiao, 'Microwave Measurements of The Photonic Band Gap in a Two-Dimensional Photonic Crystal Slab,' J. Appl. Phys,Vol. 92, no. 11, pp. 6918-6920,2002 https://doi.org/10.1063/1.1518162
  20. X. Hu, Y. Shen, X. Liu, R. Fu, and J. Zi, 'Superlensing Effect in Liquid Surface Waves,' Phys. Rev. E, Vol. 69, pp. 030201-1-4,2004 https://doi.org/10.1103/PhysRevE.69.030201
  21. Y. Iida, Y. Omura, Y. Ogawa, T. Kinoshita, and M. Tsuji, 'Ring Resonator with Sharp U-Turns Using a SOI-Based Photonic Crystal Waveguide with Normal Single-Missing-Hole-Line Defect,' Proc. Of. SPIE, Vol. 5277, pp. 206-214, 2003 https://doi.org/10.1117/12.522925