• Title/Summary/Keyword: Pillar shape

Search Result 75, Processing Time 0.031 seconds

Analysis of Cross-Section Shape Slope of Pillar for Vacuum Glazing according to the Screen Printing Parameters (스크린 인쇄 공정 변수에 따른 진공유리용 필러의 단면형상 기울기 분석)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.43-48
    • /
    • 2012
  • The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc. for forming the high precision micro-pattern. Also A number of studies of screen printing method has been conducted as the method for the cost down through the improvement of productivity. Because of being the dot printing method of the cylindrical shape not being the line printing method like the existing PDP barrier rib and phosphor, the pillar arrays using the screen printing method is deposited in the hemispherical type not being cylindrical shape in the existing printing process conditions. In this paper, the parameters were set on the screen printing device in order to deposit the cross-sectional shape with the cone or trapezoid shape of the pillar in depositing the pillars used the screen printing device for vacuum glazing. The cross-sectional shape slope of the pillar according to the parameters was measured. And analysis the effect of the screen printing process conditions on the cross-sectional shape slope of pillars based upon the result of being measured. The processing conditions were drawn to minimize the cross-sectional shape slope of pillar.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Development of Optimum Design Technique for Bus Window Pillar Member (버스 윈도우 필라 부재의 형상 최적 설계기술 개발)

  • 김명한;김대성;임석현;서명원;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.156-164
    • /
    • 1999
  • The body structure of a bus is generally assembled by using various spot welded box sectional members. The shape of window pillar joint is ordinarily built up by T-type member. It has been shown that T-type member has problems like high stress concentrations, low fatigue strength and low structural rigidity. In this study, to solve these problems a new approach to optimize the design of the bus window pillar joint was tried by FEM analysis and experiments. To describe the shape of the gusset connecting the vertical and horizontal members of the T-type window pillar joint B-spline curve was adopted and this curve was optimized . It was found that the new model developed could effectively improve fatigue durability an structural rigidity.

  • PDF

The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings (다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석)

  • Min, Hyung-Ki;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Theoretical Consideration on Influences of Cavity or Pillar Shape on Band Structures of Silicon-Based Photonic Crystals

  • Ogawa, Yoshifumi;Tamura, Issei;Omura, Yasuhisa;Iida, Yukio
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2007
  • This paper describes physical meanings of various influences of cavity (or pillar) shape and filling factor of dielectric material on band structures in two-dimensional photonic crystals. Influences of circular and rectangular cross-sections of cavity (or pillar) arrays on photonic band structures are considered theoretically, and significant aspects of square and triangular lattices are compared. It is shown that both averaged dielectric constant of the photonic crystal and distribution profile of photon energy play important roles in designing optical properties. For the triangular lattice, especially, it is shown that cavity array with a rectangular cross-section breaks the band structure symmetry. So, we discuss this point from the band structure and address optical properties of lattice with a circular cross-section cavity.

Optimization of Ingredients for Vacuum Glazing Pillar Using DOE (실험계획법을 이용한 진공유리 Pillar 재료의 혼합비율 최적화)

  • Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1002-1007
    • /
    • 2012
  • The manufacturing method of the pillar is one of the main process where it is used in vacuum glazing and semi-conductor display field. Pillar can be arranged by screen printing method. However it may unable to spread all pattern of metal mask according to the ingredient of the mixture. In addition, spreaded mixture doesn't maintain the original shape according to the viscosity. In this research, the pillar tried to be arranged through the screen printing by using the inorganic compound of the alumina and silica base. This study suggested a method in which it can decrease the test frequency and design the composition of the vacuum glass pillar by using the mixture design.

Construction of information database with tool compensation histories for the tool design of a pillar part (차량 필러부품 프레스 금형설계를 위한 금형보정이력 정보 데이터베이스 구축)

  • Kim, Se-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.43-50
    • /
    • 2012
  • Database for the information of the shape accuracy is constructed with the finite element stamping analysis of the center pillar member. Analyses are carried out in order to investigate the effect of tool compensation on the product quality previously performed by an expert in the press shop. The compensation procedure is provided with three sequences for improving shape accuracy of the member by reducing the amount of springback. The analysis result shows that shape inaccuracy in the product is caused by sagging and twisting phenomena from displacement of the section part due to excessive amount of springback. From the database with springback analyses, design modification guidelines are proposed for improving the shape accuracy. The guideline is directly applied to a member with the similar shape and the sound product is obtained successfully reducing the amount of springback.

Application of Springback Analysis in the Development of a Reinforce Center Pillar Stamping Die (고강도강 Reinforce Center Pillar의 스프링백 해석)

  • Kim, K.T.;Kim, S.H.;Yoo, K.H.;Lee, C.W.;Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.297-302
    • /
    • 2014
  • The current paper introduces work that was conducted during the development of a stamping die for a reinforce center pillar made from high strength steel. In the current study, the Bauschinger effect on the springback analysis was studied by comparing simulation results with real panels, which are currently in production. For a complicated part shape, quantitative measurements of the deformed shape are not easy in general to obtain. An adjustment procedure of the shape data for some chosen sections has been suggested to improve the accuracy of the quantitative measurements. The results show that the kinematic hardening model provides more accurate results.