• 제목/요약/키워드: Pillar safety

Search Result 69, Processing Time 0.025 seconds

Connection Structure Between Center Pillar and Roof Center Rail (거셋일체형 센터필러 어퍼 루프레일 연결구조 개발)

  • Lee, Hae Hoon;Chung, Pil Sang;Kang, Chong Ku
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.26-32
    • /
    • 2021
  • This study is intended to augment the Roof strength test being evaluated by IIHS (Insurance Institute for Highway Safety). In order to find solutions for increasing Roof Crashworthiness Evaluation SWR (Strengthto-weight ratio). This study introduces that Integrated Connection Structure Between Center Pillar and Roof Center Rail is proposed as a critical solution.

Design of Unsupported Rock Pillars in a Room-and-Pillar Underground Structure by the Tributary Area Method and the Pillar Strength Estimation (지류론과 암주 강도의 추정에 의한 주방식 지하구조의 무지보 암주 설계)

  • Chang, Soo-Ho;Lee, Chulho;Choi, Soon-Wook;Hur, Jinsuk;Hwang, Jedon
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.335-343
    • /
    • 2014
  • Room-and-pillar mining method is one of the most popular underground mining method in the world. If the room-and-pillar mining method is able to be adopted in civil works, it would be highly probable to reduce underground construction costs and to expand a underground structure in use. Therefore, this study aims to analyze the design procedure of unsupported rock pillars which are indispensable to ensure the stability of a room-and-pillar underground structure. Parametric studies on their key design parameters are also carried out for 125 different kinds of design conditions. From the study, the width of a rock pillar is found to show a linear relationship with its corresponding safety factor. The safety factor of a unsupported rock pillar decreased drastically like a negative exponential function as the ratio of room width to pillar width increases in the same rock strength condition. Based on the parametric studies, a design chart to simply evaluate the geometric design parameters of a unsupported rock pillar satisfying a design safety factor is also proposed in this study.

The Study on Effect of Collision Safety by Corrosion of Body Structure (차체구조물의 부식이 충돌안전도에 미치는 영향에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 2002
  • Repair were made for front pillar, center pillar and side-step panel for lightweight vehicles with head-on and 40% off-set collision of 15 km/h in a RCAR standard. The salt dilution was sprayed and the compression tests were performed for vehicles with and without anti-corrosional treatment after repair. After 764 hours of salt-dilt sprayed test without using anti-corrosion, the mean penetration depth fur corrosion was shown to be 58% of the thickness. The resulyed decrease in bending stiffness by 10∼20% can cause reduction of the residual life and crash-absorption capability for damaged vehicles. The corrosoin safety tests showed that the anti-corrosional treatment should be made to improve the safety characteristics for a or damaged car.

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

Center Pillar Design for High Bending Collapse Performance (굽힘 붕괴 성능 향상을 위한 센터 필라 설계)

  • Kang, Sungjong;Park, Myeongjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.128-134
    • /
    • 2013
  • High bending collapse performance (maximum resistance force and mean resistance force) of body center pillar is an important design target for vehicle safety against side impact. In this study, effect of the upper section shape and the thickness of outer reinforcement on bending collapse performance was investigated for the center pillar of a large passenger car. First, through bending collapse analyses using simple models with uniform section, an optimized center pillar upper section was chosen. Next, bending collapse performance for various models of the actual center pillar with changing the thickness of outer reinforcement were analyzed. The finally designed model showed distinctive enhancement in bending collapse performance nearly without weight increase.

An Assessment of Rock Pillar Behavior in Very Near Parallel Tunnel (초근접 병설터널의 암반 필라 거동 평가)

  • Kim, Won-Beom;Yang, Hyung-Sik;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • Focusing on the load tunnel, this study assessed the behavior of rock pillars with less than 0.5D of the minimized distance between the two horizontal tunnels by using a three dimensional numerical analysis. Based on a parameter affecting the behavior of rock pillars, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the pillar width increases, the current curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. Judging from the minimum safety factor, the study suggested a design chart, working on the minimized distance between the two horizontal tunnels.

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim;Genis, Melih;Yavuz, Mahmut
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.463-475
    • /
    • 2022
  • In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.

A Study on Pillar Behavior of Twin Parallel Tunnels by Numerical Approach (병렬터널 필라부 거동에 대한 수치해석 검토)

  • Byun, Yoseph;Kim, Hyungi;Lee, Sangsu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.49-55
    • /
    • 2010
  • Safety estimation of the pillar between parallel tunnels are very important considering stress concentration in case the piller width is not enough to secure the stability. Pillar width needs to be determined properly because of the progressive failure-risk of pillar due to stress-concentration. In this research, the effect of element size in numerical analysis was evaluated based on that yield pillar's stability and proposed systematic analysis about pilar's stability examination. In consequence of it, element size does not give any effect on intensity stress ratio. On the other hand, the analysis using the smaller element size results in lower safety factor in strength reduction technique. In case of the weathered re.k on the main ground layer, the analysis of result was not reliable. In conclusion, the smaller element size is, the more stable factor is.

A Study on Stamping of the Center Pillar (High-Strength Steel-780MPa) Using Finite Element Analysis (유한요소해석을 이용한 센터필러(고장력강-780MPa)의 스탬핑 공정 설계)

  • Bang, G.B.;Seong, H.S.;Kwak, H.S.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Center pillar, which is installed in the center of flank of car body, supports roof and door and ensures the safety of driver by reducing the damage of car body caused by impact. Recently, high-strength steel is widely used to manufacture the center pillar due to high stiffness and fuel efficiency. In this study, material properties of the high-strength steel, whose tensile strength is more than 780MPa, were obtained to produce the center pillar. Stamping was performed by considering the design parameters (blank holder force, press stroke, blank size and pad pressure) used in the actual filed. The drawbeads were included in the stamping process to reduce the amounts of wrinkling and spring back. Using the commercial software, Autoform R5.2 and Minitab, effects of design parameters of the stamping process upon spring back were analyzed and applied to the design process. The restriking process meets the target of under 0.5mm in the amount of spring back.