Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.5.463

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling  

Ibishi, Gzim (Department of Mining Engineering, Faculty of Geosciences, Mitrovica Isa Boletini University)
Genis, Melih (Department of Mining Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University)
Yavuz, Mahmut (Department of Mining Engineering, Faculty of Architecture and Engineering, Eskisehir Osmangazi University)
Publication Information
Geomechanics and Engineering / v.28, no.5, 2022 , pp. 463-475 More about this Journal
Abstract
In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.
Keywords
LAC3D software; hard rock mine post-pillar design; underground excavation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Palinkas, S.S., Palinkas, L.A., Renac, C.H., Spnagenberg, J.E., Lueders, V., Molnar, F. and Maliqi, G. (2013), "Metallogenic model of the Trepca Pb-Zn-Ag skarn deposit, Kosovo: evidence from fluid inclusions, rare earch elements, and stable isotope data", Economic Geology., 108(1), 153-162. https://doi.org/10.2113/econgeo.108.1.135.   DOI
2 Potvin, Y., Hudyma, M. and Miller, H.D.S. (1989), "Rib pillar design in open stope mining", Bull. Can. Inst. Min. Metall., 82(927), 31-36.
3 Ren, Q., Wang, F., Chen, B., Zhao, M., Peng, Z. and Yang, M. (2020), "Stability prediction of pillars based on Bieniawski pillar strength formula: a case of a phosphate mine", Geotech. Geol. Eng., 38, 4033-4044. https://doi.org/10.1007/s10706-020-01275-9.   DOI
4 Sainoki, A. and Mitri, H.S. (2017), "Numerical investigation into pillar failure induced by time-dependent skin degradation", Int. J. Min. Sci. Technol., 27(4), 591-7. https://doi.org/10.1016/j.ijmst.2017.05.002.   DOI
5 Schubert, C.J. and Villaescusa, E. (2008), "An approach to hard rock pillar design at the McArthur River Mine", Proceedings of the AusIMM Annual Conference, Mount Isa.
6 Thibodeau, D. and Yao, M. (2015), "Post-pillar design for overhand cut and fill mining in moderate to high stress conditions: A case study", Proceedings of the 13th ISRM International Congress of Rock Mechanics, Montreal.
7 Sharipov, A.S. and Adoko, A.C. (2021), "An approach to estimate coal pillar strength", Proceedings of the IOP Conference Series: Earth and Environmental Science., 833(1), 012136. https://doi.org/10.1088/1755-1315/833/1/012136.   DOI
8 Zeqiri, K. (2020), "Investigation of the mining accidents at Stan Terg mine", Min. Sci., 27, 39-46. https://doi.org/10.37190/msc202703.   DOI
9 Esterhuizen, E., Mark, C. and Murphy, M. (2010), "Numerical model calibration for simulation coal pillars, gob and overburden response", Proceeding of the 29th international conference on ground control in mining, Margantown.
10 Abdellah, W., Mitri, H.S., Thibodeau, D. and Moreau-Verlan, L. (2012), "Stochastic evaluations of haulage drift unsatisfactory performance using random Monte-Carlo simulation", Int. J. Min. Eng., 4(1), 63-87. https://doi.org/10.1504/IJMME.2012.048000.   DOI
11 Gao, W. (2018), "Influence of interaction between coal and rock on the stability of strip coal pillar", Geomech. Eng., 14(5), 499-507. https://dx.doi.org/10.12989/gae.2018.14.5.499   DOI
12 Hetemi, M. (2013), "Contribution to the optimal modeling of mine field opening from level XI to level XIII in Stan Trg mine", Ph.D. Dissertation. University of Prishtina, Prishtin Dissertation. University of Prishtina, Prishtina.
13 Ibishi, G. (2019), "Stability Assessment of Post Pillars in Cut-and-Fill Stoping Method at Trepca Underground Mine", Ph.D. Dissertation. Eskisehir Osmangazi University, Eskisehir.
14 Lang, B.D.A. (1994), "Span Design for Entry-Type Excavations", Ph.D. Dissertation. University of British Columbia, Vancouver.
15 Forgan, C.B. (1950), "Ore deposits at the Stan Trg lead-zinc mine", Proceedings of the 18th International Geological Congress, London.
16 Genis, M. and Colak, B. (2015), "Stability Assessment of the Gokgol Karstic Cave (Zonguldak, Turkey) by Analytical and Numerical Methods", Roc. Mech. Roc. Eng., 48(6), 2383-2403. https://doi.org/10.1007/s00603-014-0700-z.   DOI
17 Gokceoglu, C., Sonmez, H. and Kayabasi, A. (2003), "Predicting the deformation moduli of rock masses", Int. J. Roc. Mech. Min. Sci., 40, 701-710. https://doi.org/10.1016/S1365-1609(03)00062-5.   DOI
18 Grimstad, E. and Barton, N. (1993), "Updating of the Q-system for NMT", Proceeding of the international symposium on sprayed concrete-modern use of wet mix sprayed concrete for underground support. Norwegian Concrete Association, Oslo, Norway.
19 Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Roc. Mech., 6(4), 189-236.   DOI
20 Aydan, O., Tokashiki, N. and Genis, M. (2012), "Some considerations on yield (failure) criteria in rock mechanics", Proceedings of the 46th US Rock Mechanics Geomechanics Symposium, Chicago.
21 Emad, M.Z. (2017), "Numerical modelling approach for mine backfill", India Academy of Science, 42(9), 1595-1604. https://doi.org/10.1007/s12046-017-0702-0.   DOI
22 Hemant, K., Debasis, D. and Chakravary, D. (2017), "Design of crown pillar thickness using finite element method and multivariate regression analysis", Int. J. Min. Sci. Technol., 27, 955-964. https://doi.org/10.1016/j.ijmst.2017.06.017.   DOI
23 Serafim, J.L. and Pereira, J.P. (1983), "Considerations of geomechanics classification of Bieniawski", Proceedings of the International Symposium on engineering geology and underground construction, Rotterdam, Balkema.
24 Hoek, E. and Brown, E.T. (1997), "Practical estimates or rock mass strength", Int. J. Roc. Mech. Min. Sci. Gem. Abst., 34(8), 1165-1186.   DOI
25 Read, S.A.L., Richards, L.R. and Perrin, N.D. (1999), "Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks", Proceedings of the 9th international symposium on rock mechanics, Paris.
26 Salamon, M.D.G. and Munro, A.H. (1967), "A study of the strength of coal pillars", J. S. Afr. Inst. Min. Metall., 68, 55-67.
27 Khawar, M. (2013), "Development of correlation between rock classification system and modulus of Deformation", University of Engineering and Technology, Lahore.
28 Li, X., Li, D., Liu, Zh., Zhao, G. and Wang, W. (2013), "Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modeling", Int. J. Roc. Mech. Min. Sci., 57(3), 42-56. https://doi.org/10.1016/j.ijrmms.2012.08.005.   DOI
29 Marinos, P. and Hoek, E. (2000), "GSI: a geologically friendly tool for rock mass strength estimation", Proceedings of the GeoEng2000 at the Int Conf on Geotechnical and Geological Engineering.
30 Idris, M.A., Saiang, D. and Nordlund, E. (2015), "Stochastic assessment of pillar stability at Laisvall mine using artificial neural network", Tunn. Undergr. Sp. Technol., 49, 307-319. https://doi.org/10.1016/j.tust.2015.05.003.   DOI
31 Krauland, N. and Soder, P.E. (1987), "Determining pillar strength from pillar failure observation", Eng. Min. J., 8, 34-40.
32 Lunder, P.J. and Pakalnis, R.C. (1997), "Determination of the strength of hard-rock mine pillars", Bull. Can. Inst. Min. Metall., 90, 51-55.
33 Mark, C. and Bieniawski, Z.T. (1986), "An empirical method for the design of chain pillars in longwall mining", Proceedings of the 27th U.S. Symposium on Rock Mechanics, New York.
34 Von Kimmelmann, M.R., Hyde, B. and Madgwick, R.J. (1984), "The use of computer applications at BCL Limited in planning pillar extraction and the design of mining layouts", ISRM/BGS, Cambridge.
35 Ozbay, M.U., Ryder, J.A. and Jager, A.J. (1995), "The design of pillar system as practiced in shallow hard-rock tabular mines in South Africa", J. S. Afr. Inst. Min. Metall., 95, 7-18.
36 Kumar, H., Deb, D. and Chakravarty, D. (2017), "Numerical analysis of sill and crown pillar stability for multilevel cut and fill stopes in different geomining conditions", Geotech. Geol. Eng., 34, 529-549. https://doi.org/10.1007/s10706-015-9964-7.   DOI
37 Wagner, H. (2003), "The role of pillars in small underground mines", International Conference on Safety and Environment Aspects of Mining., 63, 89-104.
38 Zhou, N., Yan, H., Jiang, Sh., Sun, Q. and Ouyand, S. (2019), "Stability analysis of surrounding rock in paste backfill recovery of residual room pillars", Susta. O. Ac, J., 11:1-13. https://doi.org/10.3390/su11020478.   DOI
39 Mitri, H.S. (2007), "Assessment of horizontal pillar burst in deep hard rock mines", Int. J. Risk Ass. Manag., 7(5), 695-707. https://doi.org/10.1504/IJRAM.2007.014094.   DOI
40 Nicholson, G.A. and Bieniawski, Z.T. (1990), "A nonlinear deformation modulus based on rock mass classification", Int. J. Min. Geol. Eng., 8, 181-202.   DOI
41 Pariseau, W.G., Duan, F. and Schmuck, S.H. (1984), "Numerical assessment of the influence of anisotropy on steeply dipping VCR stopes", SME-AMI, New York.
42 Van der Merwe, J. and Mathey, M. (2013), "Update of coal pillar Database for South African coal mining", J. S. Afr. Ins. Min. Metal., 113, 825-40. https://doi.org/10.1088/1755-1315/833/1/012136.   DOI
43 Sjoberg, J. (1993), "Design methods for stope and sill pillars with application to the Zinkgruvan Mine", Roc. Mech. Roc. Eng., 26(3), 253-275.   DOI
44 Sonmez, H., Gokceoglu, C. and Ulusay, R. (2004), "Indirect determination of the modulus of deformation of rock masses based on the GSI system", Int. J. Roc. Mech. Min. Sci., 41(5), 849-857. https://doi.org/10.1016/j.ijrmms.2003.01.006.   DOI
45 Unlu, T. (2000), "Critical dimension concept in pillar stability", Proceedings of the 17th International Mining Congress and Exhibition of Turkey: IMCET, Ankara, Turkey.
46 Ramamurthy, T. (2004), "A geo-engineering classification for rocks and rock masses", Int. J. Roc. Mech. Min. Sci., 41, 89-101. https://doi.org/10.1016/S1365-1609(03)00078-9.   DOI
47 Bieniawski, Z.T. (1978), "Determining rock mass deformability: experience from case histories", Int. J. Roc. Mech. Min. Sci. Geomech., 15, 237-247.   DOI
48 Wang, J., Milne, D. and Pakalnis, R. (2002), "Application of a neural network in the empirical design of underground excavation spans", Min. Technol., 111(1), 73-81. https://doi.org/10.1179/mnt.2002.111.1.73.   DOI
49 Zhang, J., Peng, H., Qiang, Z., Meng, L. and Zhi-wei, C. (2017), "Stability and control of room mining coal pillars-taking room mining coal pillars of solid backfill recovery as an example", J. Cen. S. Uni., 24(5), 1121-1132. https://doi.org/10.1007/s11771-017-3515-8   DOI
50 Paveley, L.A. and Harding, R.B. (2011), "Pillar Optimization? Post-Pillar Cut and Fill Mining in a shallow dipping Ni Sulfide deposit in Northern Manitoba", Can. Inst. Min. Metall. Pet.
51 Jawed, M. and Sinha, R.K. (2018), "Design of rhombus coal pillars and support for roadway stability and mechanizing loading of face coal using SDLs in a steeply inclined thin coal seam-a technical feasibility study", Arab. J. Geosci., 11, 415. https://doi.org/10.1007/s12517-018-3747-4   DOI
52 Mortazavi, A., Hassani, F.P. and Shabani, M. (2009), "A numerical investigation of rock pillar failure mechanism in underground openings", Comp. Geo., 36, 691-697. https://doi.org/10.1016/j.compgeo.2008.11.004.   DOI
53 Barton, N. (2002), "Some new Q-value correlations to assist in site characterisation and tunnel design", Int. J. Roc. Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.   DOI
54 Bieniawski, Z.T. (1989), "Engineering Rock Mass Classification", Wiley, New York.
55 Kaiser, P.K., Kim, B., Bewick, R.P. and Valley, B. (2010), "Rock mass strength at depth and implications for pillar design", Proceedings of the 5th international seminar on deep and high stress mining. Santiago, Chile.
56 Lunder, P. (1994), "Hard rock pillar strength estimation: an applied empirical approach", MSc Thesis. University of British Columbia, Vancouver.
57 Vasarhelyi, B. and Kovacs, D. (2017), "Empirical methods of calculating the mechanical parameters of the rock mass", Periodica Polytechnica Civil Eng., 61(1), 38-50. https://doi.org/10.3311/PPci.10095.   DOI
58 Sherizadeh, T. and Kulatilake, P.H.S.W. (2016), "Assessment of roof stability in a room and pillar coal mine in the U.S. using three-dimensional distinct element method", Tunn. Undergr. Sp. Technol., 10, 24-37. https://doi.org/10.1016/j.tust.2016.06.005.   DOI
59 Jessu, K., Spearing, A. and Sharifzadeh, M. (2018), "Laboratory and numerical investigation on strength performance of inclined pillars", Energies, 11(11), 3229. https://doi.org/10.3390/en11113229.   DOI
60 Martin, C.D. and Maybee, W.G. (2000), "The strength of hard-rock pillars", Int. J. Roc. Mech. Min. Sci., 37, 1239-1246.   DOI
61 Naung, N., Sasaoka, T., Shimada, H. and Hamanaka, A. (2018), "Stability assessment of open stope under overlaying mined-out regions at Modi Taung gold mine, Myanmar", Int. J. Geosc., 9(9), 547-571. https://doi.org/10.4236/ijg.2018.99032.   DOI
62 Oke, J. and Kalenchuk, K. (2017), "Selecting the most applicable hard rock pillar design method", Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, California, USA.
63 Ghasemi, E., Kalhori, H. and Bagherpour, R. (2017), "Stability assessment of hard rock pillars using two intelligent classification techniques: a comperative study", Tunn. Undergr. Sp. Technol., 68, 32-37. https://doi.org/10.1016/j.tust.2017.05.012.   DOI
64 Ouchi, A.M., Pakalnis, R. and Brady, T.M. (2004), "Update of span design curve for weak rock masses", Proceedings of the 99th Annual AGM-CIM Conference, Edmonton.
65 Wang, J., Pakalnis, R.., Milne, D. and Lang, B. (2000), "Empirical underground entry-type excavation span design modification", Proceedings of the 53rd Annual Conference of the Canadian Geotechnical Society, Montreal.
66 Aydan, O., Ulusay, R. and Kawamoto, T. (1997), "Assessment of rock mass strength for underground excavations", Proceedings of the 36th US Rock Mechanics Symposium, New York.
67 Bednarek, L. and Majcherczyk, T. (2020), "An analysis of rock mass characteristics which influence the choice of support", Geomech. Eng., 21(4), 371-377. https://doi.org/10.12989/gae.2020.21.4.371.   DOI
68 Galera, J.M., Alvarez, M. and Bieniawski, Z.T. (2005), "Evaluation of the deformation modulus of rock masses: comparison of pressuremeter and dilatometer tests with RMR prediction", Proceedings of the ISP5-PRESSIO International symposium, Madrid.
69 Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Roc. Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.   DOI
70 Itasca. (2005), FLAC3D-Fast lagrangian analysis of continua-user manual, ver. 2.21, Itasca Consulting Group, Minneapolis.
71 Hedly, D.G.F. and Grant, F. (1972), "Stope-and-pillar design for the Elliot lake uranium mines", Bull. Can. Inst. Min. Metall., 65, 37-44.