• Title/Summary/Keyword: Pile material

Search Result 259, Processing Time 0.029 seconds

The inverse kinematics and redundancy of reclaimers (불출기의 여유자유도와 역기구학 해)

  • Shin, Ki-Tae;Choi, Chin-Thoi;Lee, Kwan-Hee;Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.469-475
    • /
    • 1997
  • A method for solving the inverse kinematic problem of reclaimer is presented in this paper. The reclaimers in the raw yard are being used to dig raws and transfer them to the blast furnaces. The kinematic configuration of the reclaimer is different from that of commercially available robots, because it has a rotating disk with several buckets at the end of the boom to dig raws. The reclaimer has a redundancy due to the rotating disk : the degrees of freedom are greater than the number of forward kinematic equations. A plane equation in the 3-dimensional space is determined by using several points adjacent to the reclaiming point of the raw ores pile. A constraint is obtained from the relation ship of the plane equation and trajectories of the bucket of the reclaimer. Finally, a solution of the inverse kinematics of the reclaimer is determined by a numerical method.

  • PDF

Analysis of Material Deformation Behavior in Nanoindentation Process by using 3D Finite Element Analysis and its Experimental Verification (3차원 유한요소해석을 이용한 나노인덴테이션 공정에서의 소재거동해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1174-1177
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic recover and pile-up was proposed. The indenter was modeled a 3D rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

A foundation treatment optimization approach study in hydraulic engineering

  • Zhang, Tianye;Liu, Shixia
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.215-225
    • /
    • 2018
  • To reach a better foundation treatment project, an optimized analysis of composite foundation was studied in the field of hydraulic engineering. Its unique characteristics in hydraulic engineering were concluded. And, the overall and detailed analysis of the composite foundation model established was carried out. The index parameters of the vertical reinforced rigid pile composite foundation were formulated. Further, considering the unique role of cushion in hydraulic engineering, its penetration and regularity were analyzed. Then, comparative and optimized analyses of cushion multistage physical dimensions and multistage material characteristics were established. The parameters of the piles distance were optimized and the multilevel scientific and reasonable parameters information was obtained. Based on the information of these parameters, the practical application was verified. It effectively supported the effective application of vertical reinforcement rigid pile composite foundation in hydraulic engineering. The service mechanism of composite foundation was fully analyzed.

A Study on Elastic-Plastic Deformation and 3-D FEA for the Berkovich Nano-Indentation (베르코비치 나노인덴테이션에 대한 3차원 유한요소해석과 탄소성 변형에 관한 연구)

  • Yang Hyeon-Yun;Kim Ji-Soo;Yun Jon-Do;Cho Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.167-173
    • /
    • 2005
  • The Berkovich nano-indentation is an indentation test method analyzing mechanical properties of materials such as hardness and elastic modulus. The length scale of the penetration is measured in nanometers. Therefore, this method becomes widely useful for analyzing the mechanical property of thin film which can not be measured before. In this paper, comparing two results of the load-displacement curve obtained by the Berkovich nano-indentation and the 3-D finite element analysis, it was confirmed that the 3-D finite element analysis is useful. The phenomenon of pile-up and sink-in due to material properties was discussed by the finite element analysis.

A study on Development of Auto Steel-Plate Pile System Using Measurement System (계측시스템을 이용한 자동 강재 적치 관리 시스템 개발에 관한 연구)

  • Yu, Ji-Hun;Kim, Ho-Kyoung;Kim, Rea-Soo;Sin, Hun-Joo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.424-428
    • /
    • 2008
  • On processing of the shipbuilding, Various steel plates are used as the important material in many fields including the shell plate, a structure, etc. Therefore, the proper steel plate management system like a warehousing, pile, delivery is very important. Presently Operators manage the steel plate by using the software program, but they manage many parts manually, so many problems are generated on the steel plate check, management, and operator safety. In order to solve this problem, we developed Auto Steel-Plate Piling System. Also this system automatically manages and traces the steel-plate from warehousing to delivery.

  • PDF

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok;Seo, Segwan;Cho, Daesung
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.147-157
    • /
    • 2022
  • This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Analysis of Bearing Capacity of Rock Socketed Pre-Bored Super Strength Piles Based on Dynamic Load Test Results (동재하시험을 통한 선단이 암반에 근입된 초고강도 매입 PHC 말뚝의 지지력 특성 분석)

  • Kim, Rakhyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics of bearing capacity of pre-bored super strength PHC (SSPHC) piles socketed in rocks based on dynamic load test results. Because the SSPHC piles have high compressive concrete strengths compared with those of regular high strength PHC piles, the allowable structural strengths of the SSPHC piles were increased. For optimal design of the super strength PHC piles, the geotechnical bearing capacity of the SSPHC piles should also increased to balance the increased allowable structural strength of the SSPHC piles. Current practices of pile installation apply the same amount of driving energy on both SSPHC and high strength PHC piles. As results of analyzing factors that influence bearing strength of SSPHC piles using dynamic load test, there was no relationship between SPT-N value at pile toe and end bearing capacity. But driving energy effects on end bearing capacity. In case of skin friction, driving energy had no effects. And reasonable method verifying design bearing strength is necessary because end bearing capacity is not considered sufficiently in restrike test results.

A Case Study for Construction Method of drilled Shafts installed in Very Soft Soil (초연약지반에 시공된 현장타설말뚝의 시공방안 사례연구)

  • 최용규;이민희;백동진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.103-117
    • /
    • 2002
  • During the installation of drilled shafts in very soft ground, to keep the pile shape and to central concrete quality, casing method (wrinkled pipe and embedded steel pipe) and non-casing method have been used. In the construction cost, non-casing method was the most economical. When the wrinkled pipe and the embedded steel pipe casing method are used, an increase of 133% and 123% in the construction cost could be seen. When concrete for drilled shaft was placed under groundwater, underwater unseparation concrete would be used to restrain the concretes's material separation and to control the concrete quality. On the condition of required unseparable and (lowing property was assured, use of less amount of mixed material and flowing material must be recommended.

  • PDF

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (I) - Material Strength - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (I) - 재료 강도 -)

  • Kim, Sung-Ryul;Lee, Juhyung;Park, Jae-Hyun;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.259-266
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the numerical models and the related input parameters were analyzed to simulate the axial load-movement relations, which were obtained from the compression loading tests for the cylindrical specimens of the steel pipe, the concrete, and the steel-concrete composite. As the results, the behavior of the steel pipe was simulated by the von-Mises model and that of the concrete by the strain-softening model, which decreases cohesion and dilation angles as the function of plastic strains. In addition, the reinforcing bars in the concrete were simulated by applying the yielding moment and decreasing the sectional area of the bars. The applied numerical models properly simulated the yielding behavior and the reinforcement effect of the steel-concrete composite piles. The parametric study for the real-size piles showed that the material strength of the steel-concrete composite pile increased about 10% for the axial loading and about 20~45% for the horizontal loading due to the reinforcement effect by the surrounding steel pipe pile.