• Title/Summary/Keyword: Pile material

Search Result 259, Processing Time 0.032 seconds

Applicability of Steel-Concrete Composite Drilled Shafts by Pile Loading Tests (말뚝 재하시험을 이용한 강관합성 현장타설말뚝의 적용성 분석)

  • Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.111-123
    • /
    • 2010
  • The steel pipe of steel-concrete composite drilled shafts increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, pile loading tests were performed to analyze the field applicability of a steel-concrete composite drilled shafts. The test ground consisted of 5~7 m thick soil underlying rock mass. The test piles consisted of two steel-concrete composite drilled shafts, which were the concrete filled steel pipe piles with the diameter of 0.508 m, and a concrete pile with the same diameter. The test results showed that the boundary between the upper steel composite section and the lower concrete section was structurally weak and needs to be reinforced by using a inner steel cage. If the boundary is located in deep depth, which is not influenced by lateral load, the allowable strength of the lower concrete section increases, so an economical design can be performed by increasing the design load of steel-concrete composite drilled shafts.

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

A Study on the Improvement Effects of Soft Ground through In-Situ Construction of Quick Lime Pile (생석회파일 현장시험시공 통한 연약지반 개량효과에 관한 연구)

  • 천병식;고갑수;이용한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.41-48
    • /
    • 2000
  • Most land development projects and large scale civil works require a great amount of sand. And sand is also the most favorable material for soft ground improvement. The demand for sand is soaring rapidly due to increased number of projects regardless of its limited supply. Therefore, it is not difficult to predict that sand may become depleted and no longer be available as ground improvement material in the near future. Against this backdrop, developing an inexpensive sand-substitution material with an efficient accessibility will be necessary and urgently called for. So quick lime could be recommended as the substitutional material for sand. Quick lime is now preferred by forward developed nations. If Korea is able to take advantage of its abundant supply, economical efficiency could be achieved through massive production as well as being able to take advantage of utilization of natural resources. In this respect the purpose of this paper was to estimate improvement effect of soft ground though in-situ construction of quick lime pile. In-situ construction was peformed in road construction site of soft clay and in this study quick lime from Dan-yang that was estimated prominently in aspect of engineering characteristics was used. Quick lime piles were installed by 1.5m, 2.0m, 3.0m spacing to confirm improvement effect according to spacing and installed piles are 0.4m in diameter, up to 5m in length and the density of quick piles installed is 1.4 t/㎥. Vibrating wire pore water pressure cell was installed to confirm consolidation characteristics in surrounding of quick lime piles and both laboratory test and field test were carried out to confirm strength increase. In conclusion, soft ground improvement by quick lime piles was confirmed.

  • PDF

The development of reclaimer automatic system for raw material (원료 Reclaimer 자동화 시스템 개발)

  • 박형근;문성룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1276-1279
    • /
    • 1996
  • Reclaimer in the raw material yard is being used to dig iron and coal so that they transfer to main blast furnace. A newly automatic system was developed and tested in the raw yard of Kwangyang iron making. The concept of the proposed system is based on the 3-dimensional detection of pile and auto-landing on the surface it.

  • PDF

Development of Organic Fertilizer based on Cow dung I. Studies on Fermentation condition (우분(牛糞)의 유기질비료과(有機質肥料化) 연구(硏究) I. 부숙조건(腐熟條件)에 관(關)한 연구(硏究))

  • Lim, Dong-Kyu;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.130-136
    • /
    • 1991
  • This study was carried out under the appropriate conditions of moisture content(60~70%), C/N ratio(25~30), and C/P ratio(30~35) on the mixed materials of cow dung and rice hulls. The good mixing ratio of cow dung and rice hulls was woth to one on volume basis which was able to adjust to the moisture content and C/N ratio of the mixing material. During fermentation pile period, the mixing ratio of control, non-aerated pile with turning was two to one and that of aerated pile with blower was two ti one. In fermentation pile period, average temperature of aerated pile was $55{\sim}65^{\circ}C$ and it was more higher than control of $40{\sim}50^{\circ}C$ non-aerated pile. While total nitrogen content of aerated pile was lower than that of the control, total carbon content and C/N ratio were higher. In cure pile period, the temperature and C/N ratio of aerated pile were increased at the early stage and then they were decreased, but total nitrogen and total carbon contents of aerated pile were increased in process of days. Final product in aerated pile had more fine particles and was good for the growth of cucumber seedlings than control.

  • PDF

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor (환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Chun, Tae-Hyun;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

Remediation of a Low Permeable Soil by Environmental Double Pile (환경이중파일 기법에 의한 저투수성 오염토양의 정화)

  • 박상규;이기호;박준범;임만빈
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.243-252
    • /
    • 2003
  • Environmental Double Pile method was presented as a device to improve low permeable contaminated soil. EDP is one of the latest technology in a concept of one step process that is applied to low permeable contaminated ground to reutilize the site by enhancing drainage, contaminated remediation, bearing capacity of piles. In order to evaluate on-site applicability of this technology, qualities of EDP's drainage, strength and remediation were assessed through a series of experiments; EDP was verified to achieve remediation and improvement of soft ground.

A study on A Optimum Dimension of A Taper Granular Compaction Pile by means of Numerical Analysis (수치해석을 통한 변단면쇄석다짐말뚝의 최적 제원에 관한 사례연구)

  • Kim, Chae-Min;Go, Young-Hyoun;Yea, Geu-Guwen;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.113-121
    • /
    • 2010
  • Granular Compaction Pile are commonly used to improve bearing capacity and reduce settlements of soft soil in coastal and lowland areas. In this paper, through the field load test results of straight granular compaction piles and taper granular compaction piles, material properties of ground and GCP for numerical analysis were drawn and numerical model was established. In the numerical analysis of taper granular compaction piles with 3 different sections, a optimum dimension of taper granular compaction pile was considered at the side of settlement.

  • PDF