• Title/Summary/Keyword: Pile loading test

Search Result 251, Processing Time 0.027 seconds

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

An Empirical Formula of Bearing Capacity on Prebored and Precast Steel Piles (강관 매입말뚝의 지지력 공식 제안)

  • Park, Jong-Jeon;Kim, Do-Hyun;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.5-20
    • /
    • 2021
  • In this study, a modified empirical formula for estimating the bearing capacity of the steel pipe prebored and precast pile was proposed by performing 20 cases of real-scale field pile loading tests. The proposed formula will be based on expanded SPT N-value in order to consider the realistic condition of the surrounding soil. The formula is proposed based on a statistic approach of the data points from the field pile loading test, in order to ensure safe engineering practice while finding a reliable formula. The statistical analysis of the data points from the loading test indicated that the existing formula has been underestimated the bearing capacity of the prebored and precast pile. The proposed formula estimates 15% and 20% higher pile End bearing capacity (qt=230Pdriven(kN/m2)) and the shaft resistance (fmax=3.0NsE(kN/m2)) compared to the existing formula. The accuracy and the stability of the proposed formula was verified by comparing the estimated results with additional field test data. The verification process showed that the proposed formula was estimated to be more accurate than the existing formula.

A Study of Point Selection for Loading Cells in Bi-directional Pile Load Test (양방향재하시험에서 재하장치 위치 선정에 관한 연구)

  • Yoon, Minseung;Kim, Junwoo;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.11-16
    • /
    • 2013
  • Success or failure of the bi-directional pile load test for drilled shaft depends on point selection for loading cells, that is balanced location both uplift force and downward force. Methods to evaluate the ultimate unit side resistance in rockmass layer in both domestic and foreign are based on the uniaxial compression strength of rock core, which can hardly be obtained in domestic rockmass layers which are weathered rockmass layer and soft rockmass layer with very low RQD. Therefore, this study suggested the relation charts between the revised SPT N values and developed unit side resistance of each different layers, which were obtained from bi-directional pile load tests in various domestic sites. To evaluate the appropriateness of the relation charts, the developed unit side resistances from the relation charts were used to select the loading cell position and compared with the measured unit side resistances from field pile load test. Results showed that the developed side resistance from relation charts and the measured side resistance of weathered soil layer and weathered rock layer were very close. Average developed side resistance($1,325kN/m^2$), which are average of upper soft rock layer of loading device($1,151kN/m^2$) and lower($1,500kN/m^2$), was similar with the estimated value ($1,250kN/m^2$).

Preliminary Load Tests for the Design of Large Diameter Drilled Shaft by Bi-directional Loading Method at Toe (대구경 현장타설말뚝의 설계를 위한 선단재하방법에 의한 시험말뚝 재하시험)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.89-98
    • /
    • 2005
  • Preliminary pile load tests for the design of large diameter drilled shaft were performed on two of reduced scale(D=1370mm) test piles. The maximum loads of 2350 tonf in each direction were applied using bi-directional hydraulic jacks(Osterberg Cell) at toe. Neither of the test piles yielded in terms of skin friction and end bearing. Comparisons of the test results with several methods that estimate pile capacity show that the method of Horvath and Kenney(1979) for skin friction and Zhang and Einstein(1998) for end bearing were most appropriate for the site. The test results were directly applied to pile design in case RQD of skin and toe was larger than that of the test pile. It is desirable, therefore, to consider not only unconfined compression strength but also rock mass properties(i.e. TCR, RQD) for skin friction and end bearing evaluation in the future.

  • PDF

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

Behavior of Small-Scale Pile Group Under Vertical Loading (연직하중을 받는 소규모 무리말뚝의 거동)

  • 이영남;이승현;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • Pile load tests were carried out to investigate the contribution of the pile cap to the carrying capacity of a pile group and load transfer characteristics of piles in the group. A group of 24 piles$(4 \times6 array)$ of 92.5mm diameter steel pipe were installed to the depth of 3m fron the ground surface, the top of weathered rock. A maximum load of 320ton was applied to the pile cap, $1.5\times2.3m$, in contact with the ground surface. At the maximum load of 320ton, the pile cap has carried 22% of the total load. Average ultimate capacity of pile in the pile group was estimated to be 16.4ton, substantially higher than that of single pile, installed at the corner and tested before pile cap construction. For the same magnitude of settlement, the pile in the center carried less load than the pile at the perimeter due to strain superposition effect. Piles in the group showed almost constant contribution(approx. 60%) of side friction to the total capacity for all of the loading stages, while that of single pile decreased from 82% to 65%.

  • PDF

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles (강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안)

  • Kim, Do-Hyun;Park, Jong-Jeon;Chang, Yong-Chai;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.43-58
    • /
    • 2018
  • In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Measurement of Pile Load Transfer using Optical Fiber Sensors (광섬유 센서에 의한 말뚝 하중전이 측정)

  • 오정호;이원제;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

A Study on Bearing Capacity Characteristics of Group Crushed-Stone Compaction Piles (군쇄석다짐말뚝의 지지력 특성에 관한 연구)

  • Hwang, Geun-Bae;Lee, Min-Hee;Shin, Hyeon-Cheol;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.705-712
    • /
    • 2005
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for group crushed-stone compaction piles which were constructed at in-situ site were performed. Pile diameter was 700mm and area of loading plates were changed. The static load tests of single and group piles were performed for area replacement ratio of 20, 30 and 40%. Based on test results, bearing capacity of group crushed-stone compaction pile were estimated. The more both single pile and group pile increase, the more yield bearing capacity tended to increase. Also, the yield bearing capacity of a group pile is about 50% less than the yield bearing capacity of a single pile. If the ground reinforced with the crushed-stone compaction pile is replacement ratio of $20{\sim}40%$, RIYB of both single pile and group pile increases qualitative tendency of linear more than original ground

  • PDF