• Title/Summary/Keyword: Pig blastocyst

Search Result 125, Processing Time 0.033 seconds

Impact of In-vitro Fertility and Matrix Metalloproteinases Activation of Spermatozoa by Supplement of Tea-N-Tris to Sperm Cryopreservation of Miniature Pig (미니돼지 정자 동결 보존에 Tea-N-Tris의 첨가가 체외 수정 및 MMPs 활성에 미치는 영향)

  • Kim, Sang-Hwan;Kang, Hyun-Ah;Park, Yong-Su;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of this study is to estimate the effect of adding Tea-N-Tris (TES) to the freezing buffer for miniature pig sperm. In particular, we attempted to identify the association between the MMPs expression and the fertility and viability of frozen sperm from each extender (LEY (Lactose Egg-Yolk), TLE (TES + LEY), TFGE (TES + Fructose + Glucose Egg-Yolk)). In accordance with this, Hypoosmotic Swelling Test (HOST) respond test was the lowest among sperms frozen in LEY while the highest HOST respond was observed among sperms frozen in TLE. Furthermore, we observed MMPs expression in all sperm groups, with pro-MMP showing lower expression than active MMPs. The expression of MMP-9 and MMP-2 was the highest in sperms frozen in LEY, Meanwhile, sperms from the TFGE and TLE group showed lower level of MMP-9 and MMP-2 expression in the order of TLE being the lowest. LEY group showed lower rate of blastocyst development than the TES supplement group, although the difference was not statistically significant. Meanwhile the rate of blastocyst development appeared similar when sperms from TLE and TFGE group were used for IVF. Together, these results indicate that adding Tea-N-Tris to the sperm freezing buffer only suppresses MMPs protein activation but also maximize in-vitro fertility, providing a means to improve the success rate in the in vitro manipulation of miniature pig sperm.

Effect of Osmolarity of Culture Medium on Imprinting and Apoptotic Gene Expression in Miniature Pig Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Kyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • This study was conducted to investigate the development and gene expression in miniature pig nuclear transfer (mNT) embryos produced under different osmolarity culture conditions. Control group of mNT embryos was cultured in PZM-3 for 6 days. Treatment group of mNT embryos was cultured in modified PZM-3 with NaCl (mPZM-3, 320 mOsmol) for 2 days, and then cultured in PZM-3 (270 mOsmol) for 4 days. Blastocyst formation rate of the treatment group was significantly higher than the control and the apoptosis rate was significantly lower in treatment group. Bax-$\alpha$ and caspase-3 mRNA expression were significantly higher in the control than the treatment group. Also, the majority of imprinting genes were expressed aberrantly in in vitro produced mNT blastocysts compared to in vivo derived blastocyst H19 and Xist mRNA expression were significantly lower in the control than the treatment group or in vivo. IGF2 mRNA expression was significantly higher in the control than the treatment group or in vivo. IGF2r mRNA expression was significantly lower in the control. Methylation profiles of individual DNA strands in H19 upstream T-DMR sequences showed a similar methylation status between treatment group and in vivo. These results indicate that the modification of osmolarity in culture medium at early culture stage could provide more beneficial culture environments for mNT embryos.

Relative Analysis between Fertility and Protein Changes in Semen of Different Species in Pigs (돼지 품종간 정액 내에서 수정 능력과 단백질 변화와의 관계 분석)

  • Lee, Yeon-Ju;Lee, Sang-Hee;Kim, Yu-Jin;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • The objective of this study was to investigate the relationship between fertility and protein pattern change using in vitro fertilization, analysis of sperm characteristics and two-dimensional gel electrophoresis in different pig types. In results, the viability and mitochondria integrity of sperm were higher significantly (p<0.05) but the portions of acrosome reaction was lower significantly (p<0.05) in Duroc and $F_1$ (potbellied ${\times}$ PWG miniature pig) than PWG miniature. On in vitro fertilization to investigate fertility, the fertility of $F_1$ semen war higher significantly (p<0.05) than in Duroc and PWG miniature pig. On the other hand, protein patterns showed similar function among the different boar semen. Especially, the heat shock 70 kDa 1-like and G patch domain-containing protein 4 were significantly (p<0.05) higher expressed in $F_1$ than in Duroc and PWG miniature pig. The proteins associated with mitochondria in Duroc were significantly (p<0.05) higher expressed than in $F_1$ and PWG miniature pig. The developmental rates to blastocyst stage of oocytes fertilized with sperm of $F_1$ pig were significantly (p<0.05) higher than in PWG miniature pig. However, phosphoglycerate kinase 2 and zinc finger protein 431 were significantly (p<0.05) higher expressed in PWG miniature pig than in $F_1$ and Duroc pigs. In conclusion, the results of the present study indicate that different proteins were expressed in different pig types, and were associated with a sperm functions and embryo development.

DNA Methylation Change of Repeats Sequences in Pig SCNT Embryos Produced under Different Osmolarity Culture Conditions (삼투압 배양 조건에 따른 돼지 체세포 복제 배반포에서 Repeats 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Yang, Byoung-Chul;Hwang, Seong-Soo;Lee, Hwi-Cheul;Lee, Poong-Yeon;Cho, Chang-Yeon;Choi, Sun-Ho;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.181-184
    • /
    • 2010
  • Osmolarity of culture media is one of the most important factors affecting in vitro development. This study was conducted to investigate the DNA methylation status of Pre-1 and satellite sequence in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaG or 0.05M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. Previous our studies have reported that pNT embryos cultured in both hypertonic media showed significantly higher blastocyst formation rate than that of control. The DNA methylation status of the satellite sequences in blastocyst was characterized using bisulfite-sequencing technology. The satellite region had a similar methylation pattern of in vivo blastocyst among two culture groups excepting the control group. Each level of methylation is that the satellite DNA moderately methylated (43.10% of PZM-3; 56.12% of NaCl; 55.06% of sucrose; 60.00% of in vivo embryos). As a result of the sequence of PRE-1, CpG methylation pattern was similar to three groups, including in vivo group. In case of the satellite DNA region, the osmolarity conditions were affected CpG DNA methylation status while PRE-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. These results indicate that the modification of osmolarity in a culture media may influence to spatially change of DNA methylation of repetitive sequence for pNT embryo development.

Studies on the Sexing of Bovine Embryo by the Chromosomal Analysis and H-Y Antibody (염색체 분석 및 H-Y 항체처리에 의한 우수정란의 성판별에 관한 연구)

  • 고광두;양부근;정희태;박연수;김정익
    • Journal of Embryo Transfer
    • /
    • v.3 no.1
    • /
    • pp.48-52
    • /
    • 1988
  • 우수정란의 이식전 성판별이 관한 연구를 수행하기 위하여 GTH와 PGF$_2$$\alpha$투여에 대한 난소반응과 회수난자의 발유단계별 동결융해후 생존성을 조사하였으며, 이식전 수정라느이 성판별을 위하여 H-Y항체 처리후 정상발육 난자의 염색체를 분석하여 다음과 같은 결과를 얻었다. 웅성 비장세포(male, spleen cells)를 면역원으로 mouse와 rat에 투여, 항혈청의 항체를 확인한 결과 mouse에서는 C57 BL계통과 rat에서는 DonRyu 계통이 항체생산능력이 우수하였다. 공란우 87두에 hormone(2500IU PMSG, 25mg PGF$_2$alpha)처리하여 평균 57.8%의 채란유과 두당 4.9개의 난자가 회수되었으며, 전체회수란자(427개)중 moula(162개)와 blastocyst(190개)의 정상발육란자는 82.4%였다. 동결융해후 회수된 난자 (312개)중, 형태적으로 정상인 난자(241개)의 비율은 77.2% 발육단계별 성적은 blastocyst(83.4%)가 morula(71.0%)보다 우수하였다. 항체와 보체(Guinea pig serum)로 처리된 82개의 morula중 15개(18.3%)가 blastocyst로 발육되어 이중 5개(33.3%)가 성이 판별되었으며, 모두 xx형 성염색체를 갖는 자성수정란으로 판명되었다.

  • PDF

Porcine OCT4 reporter system as a tool for monitoring pluripotency states

  • Kim, Seung-Hun;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.

Effect of Equine Chorionic Gonadotropin and Porcine Follicle-Stimulating Hormone on Oocyte Maturation and Embryonic Development after Parthenogenesis and Nuclear Transfer in Pigs (체외성숙 배양액에 첨가된 eCG 및 돼지 FSH가 돼지 미성숙 난자의 체외성숙과 단위 발생 및 핵이식 난자의 체외발육에 미치는 영향)

  • You, Jin-Young;Jeong, Chan-Woo;Kim, Jin-Young;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The objective of this study was to examine the effect of eCG and various concentrations (20, 40, and 80 ${\mu}g/ml$) of porcine FSH on nuclear maturation and intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones (10 IU/ml hCG and 10 IU/ml eCG or $20{\sim}80{\mu}g/ml$ FSH) for the first 22 h and then further cultured in hormone-tree medium for an additional 22 h. Nuclear maturation of oocytes ($85{\sim}89%$) was not influencem foreCG and various concentrations FSH. Embryonic development to the cleavage stage ($86{\sim}94%$) and mean number of cells in blastocyst ($33{\sim}37$ cells) after PA were not altered but blastocyst formation e-treignificaddlor(p<0.05) improvem forthe supplementation eith 80 ${\mu}g/ml$ FSHr(64%) compared to 47%, io8%, iand 47% in oocytes that were treated with eCG, 20,i and 40 ${\mu}g/ml$ FSH,i numectivelo. In SCNT, fusion ($78{\sim}83%$) of cell-cytoplast couplets and siosequent embryo cleavage ($82{\sim}88%$) were not influencem fordifferent gonadotropins but blastocyst formation tended to increase forthe supplementation eith 80 ${\mu}g/ml$ FSHr(25% vs. $11{\sim}18%$). Our nuults demonstrated that oocyte maturation and embryonic development after PA and SCNT e-frinfluencem fortype of gcem fortype of gits concentration. In this study, supplementation of maturation medium eith 80 ${\mu}g/ml$ FSHrimproved preimplantation development of PA and SCNT pig embryos, probably by increasing intracellular GSH concentration of matured oocytes.

Transgenic Efficiency of FoxN1-targeted Pig Parthenogenetic Embryos

  • Yeo, Jae-Hoon;Hwang, In-Sul;Park, Jae Kyung;Kwon, Dae-Jin;Im, Seoki;Park, Eung-Woo;Lee, Jeong-Woong;Park, Choon-Keun;Hwang, Seongsoo
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas9) system can be applied to produce transgenic pigs. Therefore, we applied CRISPR/Cas9 system to generate FoxN1-targeted pig parthenogenetic embryos. Using single guided RNA targeted to pig FoxN1 genes was injected into cytoplasm of in vitro matured oocyte before electrical activation. In results, regardless of the concentrations of vector, the cleavage rate were significantly (p<0.05) decreased ($4ng/{\mu}l$, 51.24%; $8ng/{\mu}l$, 40.88%; and $16ng/{\mu}l$; 45.22%) compared to no injection group (70.44%). The blastocyst formation rates were also decreased in vector injected 3 groups ($4ng/{\mu}l$, 7.96%; $8ng/{\mu}l$, 6.4%; and $16ng/{\mu}l$; 9.04%) compared to no injection group (29.07%). In addition, the blastocyst formation rates between sham injected group (13.51%) and no injection group (29.07%) also showed significant difference (p<0.05). The mutation rates were comparable between groups ($4ng/{\mu}l$, 18.4%; $8ng/{\mu}l$, 12.5%; and $16ng/{\mu}l$; 20.0%). The sequencing analysis showed that blastocysts derived from each group were successfully mutated in FoxN1 loci regardless of the vector concentrations. However, the deletion patterns were higher than the patterns of point mutation and insertion regardless of the vector concentrations. In conclusion, we described that cytoplasmic microinjection of FoxN1-targeted CRISPR/Cas9 vector could efficiently generate transgenic pig parthenogenetic embryos in one-step.

Recent Advances in Cloning Technology in the Pig -Review-

  • Miyoshi, K.;Sato, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.258-264
    • /
    • 2000
  • Production systems for cloned pigs are very important not only for an increase in production of superior animals but also for the production of knockout animals with organs that do not contain antigens for xenotransplantation or to analyze functions of isolated human genes. At present, however, effective systems have not been developed. We have tried to produce cloned pigs by transfering cultured cells into enucleated oocytes and obtained some cloned embryos. To develop a production system for cloned pigs, the basic technologies needed to support such an effort must be improved.

Effect of Monosodium Glutamate on In Vitro Oocyte Maturation and Embryonic Development after Parthenogenesis in Pigs

  • Kim, Minji;Shin, Hyeji;Lee, Joohyeong;Lee, Seung Tae;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.297-304
    • /
    • 2017
  • This study was designed to determine the effect of monosodium glutamate (MSG) on in vitro maturation (IVM) of oocytes and early development of parthenogenesis (PA) embryos in pigs. Each IVM and IVC medium was supplemented with various concentrations (0, 0.1, 0.5 and 5 mM) of MSG and non-essential amino acids (NEAA) depending on the experimental design. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II (MII) stage were electrically activated to induce parthenogenesis (PA). When immature oocytes were treated with MSG in the absence of NEAA during IVM, nuclear maturation (83.1-87.1%), intra-oocyte glutathione content, cumulus expansion, and cleavage (91.4-93.4%) of PA embryos were not influenced by MSG treatment at all concentrations. However, blastocyst formation of PA embryos was significantly increased by 5.0 mM MSG ($45.3{\pm}6.2%$) compared to control ($25.6{\pm}3.4%$). MSG treatment during IVM in the presence of NEAA did not show significant effect on nuclear maturation of oocytes and blastocyst formation after PA while 0.5 mM MSG ($89.3{\pm}1.9%$) decreased (P < 0.05) cleavage of PA embryos compared to 0.1 mM MSG ($94.6{\pm}1.1%$). When PA embryos were treated for 7 days with MSG during IVC, 5.0 mM MSG significantly decreased blastocyst formation ($27.8{\pm}4.9%$) compared to no treatment ($41.4{\pm}1.9%$) while no decrease in blastocyst formation was observed in 0.1 and 0.5 mM ($37.4{\pm}3.4%$ and $34.4{\pm}2.6%$, respectively). Our results demonstrated that 5 mM MSG in a NEAA-free chemically defined maturation medium showed positive effect on PA embryonic development while 5 mM MSG treatment during IVC was deleterious to PA embryonic development in pigs.