Effect of Equine Chorionic Gonadotropin and Porcine Follicle-Stimulating Hormone on Oocyte Maturation and Embryonic Development after Parthenogenesis and Nuclear Transfer in Pigs

체외성숙 배양액에 첨가된 eCG 및 돼지 FSH가 돼지 미성숙 난자의 체외성숙과 단위 발생 및 핵이식 난자의 체외발육에 미치는 영향

  • You, Jin-Young (School of Veterinary Medicine, Kangwon National University) ;
  • Jeong, Chan-Woo (School of Veterinary Medicine, Kangwon National University) ;
  • Kim, Jin-Young (School of Veterinary Medicine, Kangwon National University) ;
  • Lee, Eun-Song (School of Veterinary Medicine, Kangwon National University)
  • 유진영 (강원대학교 수의학부대학) ;
  • 정찬우 (강원대학교 수의학부대학) ;
  • 김진영 (강원대학교 수의학부대학) ;
  • 이은송 (강원대학교 수의학부대학)
  • Published : 2009.09.30

Abstract

The objective of this study was to examine the effect of eCG and various concentrations (20, 40, and 80 ${\mu}g/ml$) of porcine FSH on nuclear maturation and intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones (10 IU/ml hCG and 10 IU/ml eCG or $20{\sim}80{\mu}g/ml$ FSH) for the first 22 h and then further cultured in hormone-tree medium for an additional 22 h. Nuclear maturation of oocytes ($85{\sim}89%$) was not influencem foreCG and various concentrations FSH. Embryonic development to the cleavage stage ($86{\sim}94%$) and mean number of cells in blastocyst ($33{\sim}37$ cells) after PA were not altered but blastocyst formation e-treignificaddlor(p<0.05) improvem forthe supplementation eith 80 ${\mu}g/ml$ FSHr(64%) compared to 47%, io8%, iand 47% in oocytes that were treated with eCG, 20,i and 40 ${\mu}g/ml$ FSH,i numectivelo. In SCNT, fusion ($78{\sim}83%$) of cell-cytoplast couplets and siosequent embryo cleavage ($82{\sim}88%$) were not influencem fordifferent gonadotropins but blastocyst formation tended to increase forthe supplementation eith 80 ${\mu}g/ml$ FSHr(25% vs. $11{\sim}18%$). Our nuults demonstrated that oocyte maturation and embryonic development after PA and SCNT e-frinfluencem fortype of gcem fortype of gits concentration. In this study, supplementation of maturation medium eith 80 ${\mu}g/ml$ FSHrimproved preimplantation development of PA and SCNT pig embryos, probably by increasing intracellular GSH concentration of matured oocytes.

Keywords

References

  1. Bavister BD, Leibfried ML and Lieberman G. 1993. Development of preimplantation embryos of the Golden Hamster in a defined culture medium. Biol. Reprod. 28:235-247
  2. Chian RC, Nakahara H, Niwa K and Funahashi H. 1992. Fertilization and early cleavage in vitro of ageing bovine oocytes after maturation in culture. Theriogenology 37:665-672 https://doi.org/10.1016/0093-691X(92)90146-I
  3. Christenson RK, Ford JJ and Readmer DA. 1985. Maturation of ovarian follicles in the prepubertal gilt. J. Reprod. Fert. Suppl. 33:21-36
  4. Cortvrintdt R, Smitz J and Van Steriteghem AC. 1997. Assessment of the need for follicular stimulating hormone in early preantral mouse follicle culture in vitro. Hum. Reprod. 12:759-768 https://doi.org/10.1093/humrep/12.4.759
  5. de Matos DG and Fumus CC. 2000. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of $\beta$-mercaptoethanol, cysteine and cystine. Theriogenology 53:761-771 https://doi.org/10.1016/S0093-691X(99)00278-2
  6. Fatechi AN, Roelen BA, Colenbrander B, Schoevers EJ, Gadella BM, Bevers MM and van den Hurk R. 2005. Presence of cumulus cells during in vitro fertilization protects the bovine oocytes against oxidative stress and improves first cleavage but does not affect further development. Zygote 13:177-185 https://doi.org/10.1017/S0967199405003126
  7. Foote WD, Mills CD, Phelps DA and Tibbitts FD. 1978. Oocyte maturation within stimulated immature bovine follicles in vivo. Ann. Biol. Anim. Bioch. Biophys. 18:435-440 https://doi.org/10.1051/rnd:19780314
  8. Funahashi H and Day BN. 1993. Effects of the duration of exposure to hormone supplements on cytoplasmic maturation of pig oocytes in vitro. J. Reprod. Fertil. 98:179-185 https://doi.org/10.1530/jrf.0.0980179
  9. Funahashi H, Cantley T and Day BN. 1994. Different hormonal requirements of pig oocyte-cumulus complexes during maturation in vitro. J. Reprod. Fert. 101:159-165 https://doi.org/10.1530/jrf.0.1010159
  10. Hassold T and Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:280-291 https://doi.org/10.1038/35066065
  11. Hillensjo T and Channing CP. 1980. Gonadotropin stimulation of steroidogenesis and cellular dispersion in cultured porcine cumuli oophori. Gamete Res. 3:233-240 https://doi.org/10.1002/mrd.1120030305
  12. Kano K, Miyano T and Kato S. 1998. Effects of glycosaminoglycans on the development of in vitro-matured and-fertilized porcine oocytes to the blastocyst stage in vitro. Biol. Reprod. 58:1226-1232 https://doi.org/10.1095/biolreprod58.5.1226
  13. Kikuchi K, Nagai T, Motilik J, Shiuoya Y and Izaike Y. 1993. Effect of follicle cells in vitro fertilization of pig follicular oocytes. Theriogenology 39:593-599 https://doi.org/10.1016/0093-691X(93)90246-2
  14. Mattioli M, Bacci ML, Galeati G and Seren E. 1991. Effects of LH and FSH on the maturation of pig oocytes in vitro. Theriogenology 36:95-105 https://doi.org/10.1016/0093-691X(91)90438-J
  15. Meinecke B and Meinecke-Tillmenn S. 1979. Effects of gonadotropins on oocyte maturation and progesterone production by porcine ovarian follicles cultured in vitro. Theriogenology 11:351-365 https://doi.org/10.1016/0093-691X(79)90059-1
  16. Munoz J, Del Nino Jesus A, Josa A, Espinosa E and Gil I. 1995. Use of follicle-stimulating hormone (FSH) to increase the in vitro fertilization (IVF) efficiency of mice. J. Ass. Reprod. Genet. 12:738-743 https://doi.org/10.1007/BF02212903
  17. Nagai T and Moor RM. 1990. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized in vitro. Mol. Reprod. Dev. 26:377-382 https://doi.org/10.1002/mrd.1080260413
  18. Naito K, Daen FO and Toyoda Y. 1992. Comparison of histone H1 kinase activity during meiotic maturation in different media in vitro. Biol. Reprod. 47:43-47 https://doi.org/10.1095/biolreprod47.1.43
  19. Naito K, Fukuda Y and Toyoda Y. 1988. Effects of porcine follicular fluid on male pronucleus formation in porcine oocytes matured in vitro. Gamete Res. 21:289-295 https://doi.org/10.1002/mrd.1120210310
  20. Nakai M, Kashiwazaki N, Takizawa A, Maedomari N, Ozawa M, Noguchi J, Kaneko H, Shino M and Kikuchi K. 2006. Morphologic changes in boar sperm nuclei with reduced disulfide bonds in electrostimulated porcine oocytes. Reproduction 131:603-611 https://doi.org/10.1530/rep.1.01001
  21. Niwa K. 1993. Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fert. Suppl. 48:49-59
  22. Osborn JC and Moor RM. 1983. The role of steroid signals in the maturation of mammalian oocytes. J. Steroid Biochem. 19:133-137
  23. Polejaeva lA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A and Campbell KH. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86-90 https://doi.org/10.1038/35024082
  24. Prochazaka R, Nagyova E, Rimkevicova Z, Nagai T, Kikuchi K and Motlik J. 1991. Lack of effect of oocytectomy on expansion of the porcine cumulus. J. Reprod. Fert. 93:569-576 https://doi.org/10.1530/jrf.0.0930569
  25. Sakatani M, Suda I, Oki T, Kobayashi S, Kobayashi S and Takahashi M. 2007. Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J. Reprod. Dev. 53:605-614 https://doi.org/10.1262/jrd.18124
  26. Samande J and Chupin D. 1981. Production of PMSG antiserum in cattle:assay of inhibitory and use in superovulated heifers. Theriogenology 15:108 https://doi.org/10.1016/S0093-691X(81)80025-8
  27. Samartzi F, Tsakmakidis I, Theodosiadou E and Vainas E. 2008. Effect of porcine and ovine FSH on nuclear maturation of pig oocytes in vitro. Reprod. Domest. Anim. 43:153-156 https://doi.org/10.1111/j.1439-0531.2007.00868.x
  28. Schoevers EJ, Kidson A, Verheijden JHM and Bevers MM. 2003. Effect of follicle-stimulating hormone on nuclear and cytoplasmic maturation of sow oocytes in vitro. Theriogenology 59:2017-2028 https://doi.org/10.1016/S0093-691X(02)01288-8
  29. Sha W, Xu BZ, Li M, Liu D, Feng HL and Sun QY. 2009. Effect of gonadotropins on oocyte maturation in vitro:an animal model. Fertil. Steril. (in press) https://doi.org/10.1016/j.fertnstert.2009.03.003
  30. Silvestre MA, Alfonso J, Garcia-Mengual E, Salvador I, Duque CC and Molina I. 2006. Effect of recombinant human FSH and LH on in vitro maturation of porcine oocyte evaluated by the subsequent in vitro development of embryos obtained by in vitro fertilization, intracytoplasmic sperm injection or parthenogenetic activation. J. Anim. Sci. 85:1156-1160 https://doi.org/10.2527/jas2006-645
  31. Song K and Lee E. 2007. Modification of maturation condition improves oocyte maturation and in vitro development of somatic cell nuclear transfer pig embryos. J. Vet. Sci. 8:81-87 https://doi.org/10.4142/jvs.2007.8.1.81
  32. Takahashi M, Nagai T, Okamura N, Takahashi H and Okano A. 2002. Promoting effect of $\beta$-mercaptoethanol on in vitro development under oxidative stress and cysteine uptake of bovine embryos. Biol. Reprod. 66:562-567 https://doi.org/10.1095/biolreprod66.3.562
  33. Takano H, Koyama K, Kozai C, Kato Y and Tsunoda Y. 1993. Effects of aging of recipient oocytes on the development of bovine nuclear transfer embryos in vitro. Theriogenology 39:909-917 https://doi.org/10.1016/0093-691X(93)90428-8
  34. Walker SC, Shin T, Zaunbrecher GM, Romano JE, Johnson GA, Bazer FW and Piedrahita JA. 2002. A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes. Cloning Stem Cells. 4:105-112 https://doi.org/10.1089/153623002320253283
  35. Wang WH, Abeydeera LR, Cantley TC and Day BN. 1997. Effects of oocyte maturation media on development of pig embryos produced by in vitro fertilization. J. Reprod. Fert. 111:101-108 https://doi.org/10.1530/jrf.0.1110101
  36. Wiesak T, Hunter MG and Foxcroft GR. 1990. Differences in follicular morphology, steroidogenesis and oocyte maturation in naturally cyclic and eCG/hCG-treated prepubertal gilts. J. Reprod. Fertil. 89:633-641 https://doi.org/10.1530/jrf.0.0890633
  37. Ye J, Coleman J, Hunter MG, Craigon J, Campbell KH and Luck MR. 2007. Physiological temperature variants and culture media modify meiotic progression and develop-mental potential of pig oocytes in vitro. Reproduction 133:877-886 https://doi.org/10.1530/REP-06-0318
  38. Yoshida M, Ishigaki K, Nagai T, Chikyu M and Pursel VG. 1993. Glutathione concentration during maturation and after fertilization in pig oocyte: relevance to the ability of oocytes to from male pronucleus. Biol. Reprod. 49:89-94 https://doi.org/10.1095/biolreprod49.1.89
  39. Yoshida M, Ishizaki Y and Kawagishi H. 1990. Blastocyst formation by pig embryos resulting from in-vitro fertilization of oocytes matured in vitro. J. Reprod. Fert. 88:1-8 https://doi.org/10.1530/jrf.0.0880001
  40. Yoshioka K, Suzuki C, Tanaka A, Anas IM and Iwamura S. 2002. Birth of piglets derived from porcine zygote cultured in a chemically defined medium. Biol. Reprod. 66:112-119 https://doi.org/10.1095/biolreprod66.1.112
  41. Zelinski-Wooten MB, Hutchison JS, Hess DL, Wolf DP and Stouffer RL. 1998. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Hum. Reprod. 13:554-560 https://doi.org/10.1093/humrep/13.3.554
  42. Zelinski-Wooten, MB, Hutchison JS, Hess DL, Wolf DP, Stouffer RL. 1995. Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotropin releasing hormone antagonist-treated monkeys. Hum. Reprod. 7:1658-1666
  43. Zheng YS and Sirard MA. 1992. The effect of sera, bovine serum albumin and follicular cells on in vitro maturation and fertilization of porcine oocytes. Theriogenology 37:779-790 https://doi.org/10.1016/0093-691X(92)90041-O