• Title/Summary/Keyword: Piezoresponse force microscopy

Search Result 12, Processing Time 0.032 seconds

Observation of Ferroelectric Domain Evolution Processes of Pb(Zr,Ti)O3 Ceramic Using Piezoresponse Force Microscopy (Piezoresponse Force Microscopy를 이용한 Pb(Zr,Ti)O3 세라믹의 단계적 Poling에 의한 강유전체 도메인 진화 과정 관찰)

  • Kim, Kwanlae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.20-24
    • /
    • 2019
  • Ferroelectric material properties are strongly governed by domain structures and their evolution processes, but the evolution processes of complex domain patterns during a macroscopic electrical poling process are still elusive. In the present work, domain-evolution processes in a PZT ceramic near the morphotropic phase-boundary composition were studied during a step-wise electrical poling using piezoresponse force microscopy (PFM). Electron backscatter diffraction was used with the PFM data to identify the grain boundaries in the region of interest. In response to an externally the applied electric field, growth and retreat of non-$180^{\circ}$ domain boundaries wasere observed. The results indicate that ferroelectric polarization-switching nucleates and evolves in concordance with the pattern of the pre-existing domains.

Ferroelastic Domain Wall Motions in Lead Zirconate Titanate Under Compressive Stress Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.546-550
    • /
    • 2017
  • Ferroelectric properties are governed by domain structures and domain wall motions, so it is of significance to understand domain evolution processes under mechanical stress. In the present study, in situ piezoresponse force microscopy (PFM) observation under compressive stress was carried out for a near-morphotropic PZT. Both $180^{\circ}$ and $non-180^{\circ}$ domain structures were observed from PFM images, and their habit planes were identified using electron backscatter diffraction in conjunction with PFM data. By externally applied mechanical stress, needle-like $non-180^{\circ}$ domain patterns were broadened via domain wall motions. This was interpreted via phenomenological approach such that the total energy minimization can be achieved by domain wall motion rather than domain nucleation mainly due to the local gradient energy. Meanwhile, no motion was observed from curvy $180^{\circ}$ domain walls under the mechanical stress, validating that $180^{\circ}$ domain walls are not directly influenced by mechanical stress.

Nanoscale Probing of Ferroelectric Domain Switching Using Piezoresponse Force Microscopy

  • Yang, Sang Mo;Kim, Yunseok
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.340-349
    • /
    • 2019
  • In ferroelectric materials, piezoresponse force microscopy (PFM) has been widely used to explore ferroelectric domain switching. In this article, we review the fundamentals of nanoscale probing of ferroelectric domain switching using PFM, including the basic principles of PFM and a variety of PFM studies on local domain switching. We also introduce advanced PFM techniques for exploring switching behavior. Finally, we discuss several issues and perspectives in nanoscale probing of ferroelectric domain switching using PFM. PFM has played an important role in exploring switching behavior in ferroelectric materials, and it could be further developed to probe more detailed switching information.

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.484-488
    • /
    • 2017
  • In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.

Ferroelectricity of Bi-doped ZnO Films Probed by Scanning Probe Microscopy

  • Ben, Chu Van;Lee, Ju-Won;Kim, Jung-Hoon;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.323-323
    • /
    • 2012
  • We present ferroelectricity of Bi-doped ZnO film probed by piezoresponse force microscopy (PFM), which is one of the Scanning Probe Microscopy techniques. Perovskite ferroelectrics are limited to integration of devices into semiconductor microcircuitry due to hard adjusting their lattice structure to the semiconductor materials. Transition metal doped ZnO film is one of the candidate materials for replacing the perovskite ferroelectrics. In this study, ferroelectric characteristics of the Bi-doped ZnO grown by pulsed laser deposition were probed by PFM. The polarization switching and patterning of the ZnO films were performed by applying DC bias voltage between the AFM tips and the films with varying voltages and polarity. The PFM contrast before and after patterning showed clearly polarization switching for a specific concentration of Bi atoms. In addition, the patterned regions with nanoscale show clearly the local piezoresponse hysteresis loop. The spontaneous polarization of the ZnO film is estimated from the local piezoresponse based on the comparison with LiNbO3 single crystals.

  • PDF

Investigation of Domain Structure in (001) PMN-x%PT Crystals by Scanning Force Microscope (Scanning Force Microscope에 의한 (001) PMN-x%PT 단결정의 도메인 구조에 대한 연구)

  • Lee, Eun-Gu;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.300-304
    • /
    • 2009
  • The domain structures of annealed (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x < 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred {110} planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of {001} oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along {001} the mm scale.

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction (광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구)

  • Park, Young-Sik;Kim, Jung-Hoon;Yang, Woo-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

In-situ Growth of Epitaxial PbVO3 Thin Films under Reduction Atmosphere

  • Oh, Seol Hee;Jin, Hye-Jin;Shin, Hye-Young;Shin, Ran Hee;Yoon, Seokhyun;Jo, William;Seo, Yu-Seong;Ahn, Jai-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.1-361.1
    • /
    • 2014
  • PbVO3 (PVO), a polar magnetic material considered as a candidate of multiferroic, has ferroelectricity along the c-axis and 2-dimensional antiferromagnetism lying in the in-plane through epitaxial growth [1,2]. PVO thin films were grown on LaAlO3 (001) substrates under reduction atmosphere from a stable Pb2V2O7 sintered target using pulsed laser deposition method. Epitaxial growth of the PVO films is possible only under Ar atmospheren with no oxygen partial pressure. X-ray diffraction was used to investigate the phase formation and texture of the films. We confirmed epitaxial growth of the PVO films with crystalline relationship of PbVO3[001]//LaAlO3[001] and PbVO3[100]//LaAlO3[100]. In addition, surface morphology of the films displays drastic changes in accordance with the growth conditions. Elongated PVO grains are related to the Pb2V2O7 pyrochlore structure. The relation between structural deformation and ferroelectricity in the PVO films was examined by local measurement of piezoresponse force microscopy.

  • PDF

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF