Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.9.484

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy  

Kim, Kwanlae (Department of Engineering Science, University of Oxford)
Publication Information
Korean Journal of Materials Research / v.27, no.9, 2017 , pp. 484-488 More about this Journal
Abstract
In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.
Keywords
piezoresponse force microscopy; PZT; EBSD; poling; domain structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Arlt, Ferroelectrics, 104, 217 (1990).   DOI
2 J. Wang, S. -Q. Shi, L. -Q. Chen, Y. Li and T. -Y. Zhang, Acta Mater., 52, 749 (2004).   DOI
3 B. G. Potter, V. Tikare and B. A. Tuttle, J. Appl. Phys., 87, 4415 (2000).   DOI
4 J. Britson, P. Gao, X. Pan and L. Q. Chen, Acta Mater., 112, 285 (2016).   DOI
5 H. Guo, X. Liu, F. Xue, L. Q. Chen, W. Hong and X. Tan, Phys. Rev. B, 93, 174114 (2016).   DOI
6 J. L. Hart, S. Liu, A. C. Lang, A. Hubert, A. Zukauskas, C. Canalias, R. Beanland, A. M. Rappe, M. Arredondo and M. L. Taheri, Phys. Rev. B, 94, 174104 (2016).   DOI
7 E. Soergel, Appl. Phys. B., 81, 729 (2005).
8 S. V. Kalinin, A. Rar and S. Jesse, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 2226 (2006).   DOI
9 S. V. Kalinin and N. Balke, Adv. Energy Mater., 22, E193 (2010).   DOI
10 E. Soergel, J. Phys. D. Appl. Phys., 44, 464003 (2011).   DOI
11 D. Denning, J. Guyonnet and B. J. Rodriguez, Int. Mater. Rev., 61, 46 (2016).   DOI
12 B. J. Rodriguez, C. Callahan, S. V. Kalinin and R. Proksch, Nanotechnology, 18, 475504 (2007).   DOI
13 S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf and B. J. Rodriguez, Nanotechnology, 18, 435503 (2007).   DOI
14 S. V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R. K. Vasudevan, E. J. Lingerfelt, R. K. Archibald, C. Chen, R. Proksch, N. Laanait and S. Jesse, ACS nano, 10, 9068 (2016).   DOI
15 S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams and A. Gruverman, Microsc. Microanal., 12, 206 (2006).
16 A. Gruverman, O. Auciello and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998).   DOI
17 C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930).   DOI
18 Y. C. Shu, K. Bhattacharya, Philos. Mag. B, 81, 2021 (2001).   DOI
19 X. Y. Qi, H. H. Liu and X. F. Duan, Appl. Phys. Lett., 89, 092908 (2006).   DOI