Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.4.300

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction  

Park, Young-Sik (Department of Physics, Dongguk University)
Kim, Jung-Hoon (Department of Physics, Dongguk University)
Yang, Woo-Chul (Department of Physics, Dongguk University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.4, 2011 , pp. 300-306 More about this Journal
Abstract
We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.
Keywords
$LiNbO_3$; Atomic force microscopy; Ferroelectrics; Polarity; Metal nanoparticle; Photochemical reaction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. L. Giocondi and G. S. Rohrer, J. Phys. Chem. B 105, 8275 (2001).   DOI
2 W. -C. Yang, M. Zeman, H. Ade, and R. J. Nemanich, Phys. Rev. Lett. 90, 136102 (2003).   DOI
3 X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, Appl. Phys. Lett. 91, 044101 (2007).   DOI
4 J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, Nanotechnology 17, 4946 (2006).   DOI
5 I. K. Han, J. Korean Vacuum Soc. 18, 365 (2009).   DOI
6 J. S. Kim, S. -K. Ha, C. J. Yang, J. Y. Lee, S. H. Park, W. J. Choi, and E. J. Yoon, J. Korean Vacuum Soc. 19, 217 (2010).   DOI
7 S. V. Kalinin, B .J. Rodriguez, S. Jesse, E. Karapetian, B. Mirman, E. A. Eliseev, and A. N. Morozovska, Annu. Rev. Mater. Res. 37, 189 (2007).   DOI
8 D. Li and D. A. Bonnell, Ceramics International 34, 157 (2008).   DOI
9 S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, Adv. Mater. 16, 795 (2004).   DOI
10 D. Yiwari and S. Dunn, J. Mater. Sci. 44, 5063 (2009).   DOI
11 W. -C. Yang, B. J. Rodriguez, A. Gruvernman, and R. J. Nemanich, Appl. Phys. Lett. 85, 2316 (2004).   DOI
12 S. Dunn, P. M. Jones, and D. E. Gallardo, J. Am. Chem. Soc. 129, 8724 (2007).   DOI
13 S. Dunn and D. Tivari, Appl. Phys. Lett. 93, 092905 (2008).   DOI