Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.1.20

Observation of Ferroelectric Domain Evolution Processes of Pb(Zr,Ti)O3 Ceramic Using Piezoresponse Force Microscopy  

Kim, Kwanlae (Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SeoulTech))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.1, 2019 , pp. 20-24 More about this Journal
Abstract
Ferroelectric material properties are strongly governed by domain structures and their evolution processes, but the evolution processes of complex domain patterns during a macroscopic electrical poling process are still elusive. In the present work, domain-evolution processes in a PZT ceramic near the morphotropic phase-boundary composition were studied during a step-wise electrical poling using piezoresponse force microscopy (PFM). Electron backscatter diffraction was used with the PFM data to identify the grain boundaries in the region of interest. In response to an externally the applied electric field, growth and retreat of non-$180^{\circ}$ domain boundaries wasere observed. The results indicate that ferroelectric polarization-switching nucleates and evolves in concordance with the pattern of the pre-existing domains.
Keywords
Ferroelectric domain structures; PZT; Piezoresponse force microscopy; Poling; Morphotropic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x]   DOI
2 G. Arlt, Ferroelectrics, 104, 217 (1990). [DOI: https://doi.org/10.1080/00150199008223825]   DOI
3 V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, Nat. Mater., 2, 43 (2003). [DOI: https://doi.org/10.1038/nmat800]   DOI
4 E. Soergel, Appl. Phys. B, 81, 729 (2005). [DOI: https://doi.org/10.1007/s00340-005-1989-9]   DOI
5 E. Soergel, J. Phys. D: Appl. Phys., 44, 464003 (2011). [DOI: https://doi.org/10.1088/0022-3727/44/46/464003]   DOI
6 S. V. Kalinin, A. Rar, and S. Jesse, IEEE Trans. Ultrason. Eng., 53, 2226 (2006). [DOI: https://doi.org/10.1109/TUFFC.2006.169]   DOI
7 S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, Microsc. Microanal., 12, 206 (2006). [DOI: https://doi.org/10.1017/S1431927606060156]   DOI
8 B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology, 18, 475504 (2007) [DOI: https://doi.org/10.1088/0957-4484/18/47/475504]   DOI
9 S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, Nanotechnology, 18, 435503 (2007). [DOI: https://doi.org/10.1088/0957-4484/18/43/435503]   DOI
10 A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998). [DOI: https://doi.org/10.1146/annurev.matsci.28.1.101]   DOI
11 C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930). [DOI: https://doi.org/10.1103/PhysRev.35.269]   DOI
12 Y. C. Shu and K. Bhattacharya, Philos. Mag. B, 81, 2021 (2001). [DOI: https://doi.org/10.1080/13642810108208556]   DOI
13 R. C. Devries and J. E. Burke, J. Am. Ceram. Soc., 40, 200 (1957). [DOI: https://doi.org/10.1111/j.1151-2916.1957.tb12603.x]   DOI
14 G. Arlt and P. Sasko, J. Appl. Phys., 51, 4956 (1980). [DOI: https://doi.org/10.1063/1.328372]   DOI
15 B. G. Potter Jr., V. Tikare, and B. A. Tuttle, J. Appl. Phys., 87, 4415 (2000). [DOI: https://doi.org/10.1063/1.373086]   DOI