• Title/Summary/Keyword: Piezoresistive sensor

Search Result 116, Processing Time 0.029 seconds

Sensing Mechanism Property of $RuO_2$ Thick Film Resistor. ($RuO_2$ 후막저항을 이용한 압력센서의 출력특성 개선)

  • Lee, Seong-Jae;Park, Ha-Young;Min, Nam-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.350-351
    • /
    • 2006
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, capacitive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. Some elastic materials exhibit a change in bulk resistivity when they are subjected to displacement by an applied pressure. This property is referred to as piezoresistivity and is a major factor influencing the sensitivity of a piezoresistive strain gage. The effect of thick film resistors was first noticed in the early 1970, as described by Holmes in his paper in 1973.

  • PDF

Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method (무선계측기법을 이용한 회전 송출공의 압력계수 측정)

  • Ku, Nam-Hee;Kauh, Sang-Ken;Ha, Kyoung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.

A Study on Anisotropic Etching Characteristics of Silicon in TMAH/AP/IPA Solutions for Piezoresistive Pressure Sensor Applications (압저항 압력센서 응용을 위한 TMAH/AP/IPA 용액의 실리콘 이방성 식각특성에 대한 연구)

  • 윤의중;김좌연;이태범;이석태
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.9-14
    • /
    • 2004
  • In this study, Si anisotropic etching characteristics of tetramethylammonium hydroxide (TMAH)/ ammonium persulfate(AP)/isopropyl alcohol(IPA) solutions were investigated to realize the optimum structure of a diaphragm for the piezoresistive pressure sensor application. Due to its low toxicity and its high compatibility with the CMOS processing, TMAH was used as Si anisotropic etchants. The variations of Si etch rate on the etching temperature, TMAH concentration, and etching time were obtained. With increasing the etching temperature and decreasing TMAH concentrations, the Si etch rate is increased while a significant non-unifonnity exists on the etched surface because of formation of hillocks on the (100) surface. The addition of IPA to TMAH solution leads to smoother etched surfaces but, makes the Si etch rate lower. However, with the addition of AP to TMAH solution, the Si etch rate is increased and an improvement in flatness on the etching front is observed. The Si etch rate is also maximized with increasing the number of addition of AP to TMAH solution per one hour. The Si square membranes of 20${\mu}{\textrm}{m}$ thickness and l00-400${\mu}{\textrm}{m}$ one-side length were fabricated successfully by applying optimum Si etching conditions of TMAH/AP solutions.

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

Development of PDMS-based Drag Force-type Flowmeter with Graphite-CNT Composite as Piezoresistive Material (흑연과 CNT 복합체를 압저항체로 하는 PDMS 기반의 바람저항형 유속센서 개발)

  • Sang Jun Park;Min Gi Shin;Noh Yeon Kim;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2023
  • In this study, a polydimethylsiloxane (PDMS)-based drag force-type flowmeter was fabricated using a graphite-carbon nanotube (CNT) composite as a piezoresistive material and evaluated. The device was in the form of a cantilever, which was composed of the soft material, PDMS, and fabricated using a mold manufactured by a three-dimensional printer. The cost-effective graphite was mixed with CNTs to serve as a piezoresistive material. The optimal mixing ratio was investigated, and the piezoresistive material formed using a graphite:PDMS:CNT ratio of 1.5:1:0.01 was adopted, which showed a stable output and a high sensitivity. Various forward and backward air flows in the range of 0-10 m/s were measured using the fabricated flowmeter, and both tensile and compression characteristics were evaluated. The measured results showed a stable output, with the resistance change gradually increasing with the air flow rate. Repeatability characteristics were also tested at a repeated air flow of 10 m/s, and the flowmeter responded to the applied air flow well. Consequently, the fabricated device has a high sensitivity and can be used as a flowmeter.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity (수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조)

  • Song, Nak-Chun;Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

A Smart Sensor System with a Programmable Temperature Compensation Technique (프로그래머블한 온도 보상 기법의 스마트 센서 시스템)

  • Kim, Ju-Hwan;Kang, Yu-Ri;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

The Analysis About The Yield Strength Improvement of The Silicon Low-pressure Sensor (저압용 실리콘 압력센서의 내압 특성 향상에 관한 해석)

  • Lee, Seung-Hwan;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • This paper presents that the yield strength of the pressure sensor with a double boss diaphragm structure can be improved as the grooves are formed at the corner of the diaphragm bridge. Generally the boss structure is widely used for the low-pressure sensor, of which the sensitivity is not enough in case of the small diaphragm size limited by a chip size constraint. The double boss structure pressure sensor exhibits a great sensitivity, but suffers from the low yield strength problem due to the high stress occurred at the corner of the diaphragm bridge to be limited in the operating range. ANSYS simulation is performed by changing the length of the groove from 0.5${\mu}m$ to 10${\mu}m$ at the corner of the diaphragm bridge of the double boss structure pressure sensor. The maximum stress is analyzed at the corner of the diaphragm bridge, the edge of the diaphragm bridge, and the position of the piezoresistive sensor. Consequently, in case the length of the groove from the edge of the diaphragm is 6${\mu}m$ or greater, the stress occurred in the corner of the bridge is less than the stress acting on a piezoresistive element.