• Title/Summary/Keyword: Piezoresistive effect

Search Result 28, Processing Time 0.022 seconds

Silicon Strain Gauge Load Cell for Weighting Disdrometer

  • Lee, Seon-Gil;Moon, Young-Soon;Son, Won-Ho;Sohn, Young-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.321-326
    • /
    • 2013
  • In this paper, the usability of a compact silicon strain gauge load cell in a weighting disdrometer for measuring the impact load of a falling raindrop is introduced for application in a multi-meteorological sensor. The silicon strain gauge load cell is based on the piezoresistive effect, which has a high linearity output from the momentum of the raindrop and the simplicity of signal processing. The weighting disdrometer shows a high sensitivity of 7.8 mV/g in static load measurement when the diaphragm thickness of the load cell is $250{\mu}m$.

Data analysis for weather forecast system using pressure, temperature and humidity sensors (압력센서와 온습도센서를 이용한 일기예보 시스템의 개발을 위한 데이터 분석)

  • Kim, Won-Jae;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This paper is written for the purpose of obtaining the information about the weather easily by the development of weather forecast system sensing temperature, humidity, and atmospheric pressure as key information. For this, data is obtained from the Weather Bureau, and analyzed in order to set a standard of weather forecast from the collected data. The pressure sensor and temperature-humidity sensor are fabricated using the piezoresistive effect of semiconductor, which are used to collect data. The weather forecast system is made using microprocessor.

  • PDF

Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect (턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석)

  • 김옥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Fabrication and Temperature Compensation of Silicon Piezoresistive Absolute Pressure Sensor for Gas Leakage Alarm System (가스누출 감지용 실리콘 압저항형 절대압센서의 제조 및 온도보상)

  • Son, Seung-Hyun;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.171-178
    • /
    • 1998
  • Silicon piezoresistive absolute pressure sensor for gas leakage alarm system was developed. This sensor must operate normally in the range of $0{\sim}600\;mmH_{2}O$ pressure, and $0{\sim}100^{\circ}C$ temperature. To make the most of this sensor for gas leakage alarm system, gas must not leak from the sensor itself when the diaphragm of the sensor fractures. Thus, the sealed diaphragm cavity was anodically bonded to pyrex 7740 glass under the condition of $10^{-4}$ torr, at $400^{\circ}C$. The sensitivity of developed sensor was $4.06{\mu}V/VmmH_{2}O$ for $600\;mmH_{2}O$ full-scale pressure range. And temperature compensation method of this sensor is to change bridge-in put-voltage linearly in proportion to the temperature variation by using diode(PXIN4001) or Al thin film resistor. By these methods the temperature effect in the range of $0{\sim}100^{\circ}C$ was compensated over 80 % for offset drift, 95 % for sensitivity.

  • PDF

Ceramic Pressure Sensors Based on CrN Thin-films (CrN박막 세라믹 압력센서)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Fabrication and Characteristics of FET-type Pressure Sensor Using Piezoelectric PZT Thin Film (압전체 PZT 박막을 이용한 FET형 압력 센서의 제작과 그 특성)

  • Kim, Young-Jin;Lee, Young-Chul;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-179
    • /
    • 2001
  • The currently used semiconductor pressure sensors are piezoresistive and capacitive type. Especially, semiconductor micro pressure sensors have a great deal of attention because of their small size. However, its fabrication processes are difficult, so that its yield is poor. For the purpose of resolving the drawbacks of the existing silicon pressure sensors, we demonstrate a new type of pressure sensor using PSFET(pressure sensitive field effect transistor) and investigate its operational characteristics. We used PZT(Pb(Zr,Ti)$O_3$) as a pressure sensing material. PZT thin films were deposited on a gate oxide of MOSFET by an rf-magnetron sputtering method. To abtain the stable phase, perovskite structure, furnace annealing technique have been employed in PbO ambient. The sensitivity of the PSFET was 0.38 mV/mmHg.

  • PDF

Fabrication and Characteristics Comparison of Piezoresistive Four Beam Silicon Accelerometer Based on Beam Location (빔 위치변화에 따른 4빔 압저항형 실리콘 가속도 센서의 제조 및 특성비교)

  • Shin, Hyun-Ok;Son, Seung-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.26-33
    • /
    • 1999
  • In order to examine the effect of beam location n the performance of bridge type piozoresistive silicon accelerometer, three sensors having different location of beams were simulated by FEN(finite element method) and fabricated by RIE(reactive ion etching) and KOH etching method using SDB(silicon direct bonding) wafer, Results of the FEM simulation present that the 1st resonace frequency and Z axis sensitivity of each sensor are identical but the 2nd, and the 3rd resonace frequency and X, Y axis sensitivity are different. Even though the 1st resonance frequency and Z axis sensitivity measured from fabricated sensors do not perfectly coincide with each other, all 3 type sensors present 180 ~ 220N/G of Z sensitivity at 5 V supply voltage and 1.3 ~ 1.7kHz of the 1st resonance frequency and about 2% of lateral sensitivity.

  • PDF